Cargando…
Retinal Vascular Image Segmentation Using Improved UNet Based on Residual Module
In recent years, deep learning technology for clinical diagnosis has progressed considerably, and the value of medical imaging continues to increase. In the past, clinicians evaluated medical images according to their individual expertise. In contrast, the application of artificial intelligence tech...
Autores principales: | Huang, Ko-Wei, Yang, Yao-Ren, Huang, Zih-Hao, Liu, Yi-Yang, Lee, Shih-Hsiung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295602/ https://www.ncbi.nlm.nih.gov/pubmed/37370653 http://dx.doi.org/10.3390/bioengineering10060722 |
Ejemplares similares
-
PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation
por: Chen, Danny, et al.
Publicado: (2022) -
Improved UNet with Attention for Medical Image Segmentation
por: AL Qurri, Ahmed, et al.
Publicado: (2023) -
Unfolded deep kernel estimation-attention UNet-based retinal image segmentation
por: Radha, K., et al.
Publicado: (2023) -
BCR-UNet: Bi-directional ConvLSTM residual U-Net for retinal blood vessel segmentation
por: Yi, Yugen, et al.
Publicado: (2022) -
TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation
por: Huang, Xuping, et al.
Publicado: (2022)