Cargando…
The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study
Aortic valve disease (AVD) often coexists with coronary artery disease (CAD), but whether and how the two diseases are correlated remains poorly understood. In this study, a zero–three dimensional (0-3D) multi-scale modeling method was developed to integrate coronary artery hemodynamics, aortic valv...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295719/ https://www.ncbi.nlm.nih.gov/pubmed/37370640 http://dx.doi.org/10.3390/bioengineering10060709 |
_version_ | 1785063488075333632 |
---|---|
author | Li, Xuanyu Simakov, Sergey Liu, Youjun Liu, Taiwei Wang, Yue Liang, Fuyou |
author_facet | Li, Xuanyu Simakov, Sergey Liu, Youjun Liu, Taiwei Wang, Yue Liang, Fuyou |
author_sort | Li, Xuanyu |
collection | PubMed |
description | Aortic valve disease (AVD) often coexists with coronary artery disease (CAD), but whether and how the two diseases are correlated remains poorly understood. In this study, a zero–three dimensional (0-3D) multi-scale modeling method was developed to integrate coronary artery hemodynamics, aortic valve dynamics, coronary flow autoregulation mechanism, and systemic hemodynamics into a unique model system, thereby yielding a mathematical tool for quantifying the influences of aortic valve stenosis (AS) and aortic valve regurgitation (AR) on hemodynamics in large coronary arteries. The model was applied to simulate blood flows in six patient-specific left anterior descending coronary arteries (LADs) under various aortic valve conditions (i.e., control (free of AVD), AS, and AR). Obtained results showed that the space-averaged oscillatory shear index (SA-OSI) was significantly higher under the AS condition but lower under the AR condition in comparison with the control condition. Relatively, the overall magnitude of wall shear stress was less affected by AVD. Further data analysis revealed that AS induced the increase in OSI in LADs mainly through its role in augmenting the low-frequency components of coronary flow waveform. These findings imply that AS might increase the risk or progression of CAD by deteriorating the hemodynamic environment in coronary arteries. |
format | Online Article Text |
id | pubmed-10295719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102957192023-06-28 The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study Li, Xuanyu Simakov, Sergey Liu, Youjun Liu, Taiwei Wang, Yue Liang, Fuyou Bioengineering (Basel) Article Aortic valve disease (AVD) often coexists with coronary artery disease (CAD), but whether and how the two diseases are correlated remains poorly understood. In this study, a zero–three dimensional (0-3D) multi-scale modeling method was developed to integrate coronary artery hemodynamics, aortic valve dynamics, coronary flow autoregulation mechanism, and systemic hemodynamics into a unique model system, thereby yielding a mathematical tool for quantifying the influences of aortic valve stenosis (AS) and aortic valve regurgitation (AR) on hemodynamics in large coronary arteries. The model was applied to simulate blood flows in six patient-specific left anterior descending coronary arteries (LADs) under various aortic valve conditions (i.e., control (free of AVD), AS, and AR). Obtained results showed that the space-averaged oscillatory shear index (SA-OSI) was significantly higher under the AS condition but lower under the AR condition in comparison with the control condition. Relatively, the overall magnitude of wall shear stress was less affected by AVD. Further data analysis revealed that AS induced the increase in OSI in LADs mainly through its role in augmenting the low-frequency components of coronary flow waveform. These findings imply that AS might increase the risk or progression of CAD by deteriorating the hemodynamic environment in coronary arteries. MDPI 2023-06-11 /pmc/articles/PMC10295719/ /pubmed/37370640 http://dx.doi.org/10.3390/bioengineering10060709 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Xuanyu Simakov, Sergey Liu, Youjun Liu, Taiwei Wang, Yue Liang, Fuyou The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study |
title | The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study |
title_full | The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study |
title_fullStr | The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study |
title_full_unstemmed | The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study |
title_short | The Influence of Aortic Valve Disease on Coronary Hemodynamics: A Computational Model-Based Study |
title_sort | influence of aortic valve disease on coronary hemodynamics: a computational model-based study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295719/ https://www.ncbi.nlm.nih.gov/pubmed/37370640 http://dx.doi.org/10.3390/bioengineering10060709 |
work_keys_str_mv | AT lixuanyu theinfluenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy AT simakovsergey theinfluenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy AT liuyoujun theinfluenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy AT liutaiwei theinfluenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy AT wangyue theinfluenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy AT liangfuyou theinfluenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy AT lixuanyu influenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy AT simakovsergey influenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy AT liuyoujun influenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy AT liutaiwei influenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy AT wangyue influenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy AT liangfuyou influenceofaorticvalvediseaseoncoronaryhemodynamicsacomputationalmodelbasedstudy |