Cargando…
A Deep-Learning-Based Method Can Detect Both Common and Rare Genetic Disorders in Fetal Ultrasound
A global survey indicates that genetic syndromes affect approximately 8% of the population, but most genetic diagnoses can only be performed after babies are born. Abnormal facial characteristics have been identified in various genetic diseases; however, current facial identification technologies ca...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10295959/ https://www.ncbi.nlm.nih.gov/pubmed/37371851 http://dx.doi.org/10.3390/biomedicines11061756 |
Sumario: | A global survey indicates that genetic syndromes affect approximately 8% of the population, but most genetic diagnoses can only be performed after babies are born. Abnormal facial characteristics have been identified in various genetic diseases; however, current facial identification technologies cannot be applied to prenatal diagnosis. We developed Pgds-ResNet, a fully automated prenatal screening algorithm based on deep neural networks, to detect high-risk fetuses affected by a variety of genetic diseases. In screening for Trisomy 21, Trisomy 18, Trisomy 13, and rare genetic diseases, Pgds-ResNet achieved sensitivities of 0.83, 0.92, 0.75, and 0.96, and specificities of 0.94, 0.93, 0.95, and 0.92, respectively. As shown in heatmaps, the abnormalities detected by Pgds-ResNet are consistent with clinical reports. In a comparative experiment, the performance of Pgds-ResNet is comparable to that of experienced sonographers. This fetal genetic screening technology offers an opportunity for early risk assessment and presents a non-invasive, affordable, and complementary method to identify high-risk fetuses affected by genetic diseases. Additionally, it has the capability to screen for certain rare genetic conditions, thereby enhancing the clinic’s detection rate. |
---|