Cargando…

A Bio-Inspired Decision-Making Method of UAV Swarm for Attack-Defense Confrontation via Multi-Agent Reinforcement Learning

The unmanned aerial vehicle (UAV) swarm is regarded as having a significant role in modern warfare. The demand for UAV swarms with the capability of attack-defense confrontation is urgent. The existing decision-making methods of UAV swarm confrontation, such as multi-agent reinforcement learning (MA...

Descripción completa

Detalles Bibliográficos
Autores principales: Chi, Pei, Wei, Jiahong, Wu, Kun, Di, Bin, Wang, Yingxun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296010/
https://www.ncbi.nlm.nih.gov/pubmed/37366817
http://dx.doi.org/10.3390/biomimetics8020222
Descripción
Sumario:The unmanned aerial vehicle (UAV) swarm is regarded as having a significant role in modern warfare. The demand for UAV swarms with the capability of attack-defense confrontation is urgent. The existing decision-making methods of UAV swarm confrontation, such as multi-agent reinforcement learning (MARL), suffer from an exponential increase in training time as the size of the swarm increases. Inspired by group hunting behavior in nature, this paper presents a new bio-inspired decision-making method for UAV swarms for attack-defense confrontation via MARL. Firstly, a UAV swarm decision-making framework for confrontation based on grouping mechanisms is established. Secondly, a bio-inspired action space is designed, and a dense reward is added to the reward function to accelerate the convergence speed of training. Finally, numerical experiments are conducted to evaluate the performance of our method. The experiment results show that the proposed method can be applied to a swarm of 12 UAVs, and when the maximum acceleration of the enemy UAV is within 2.5 times ours, the swarm can well intercept the enemy, and the success rate is above 91%.