Cargando…
The Task Decomposition and Dedicated Reward-System-Based Reinforcement Learning Algorithm for Pick-and-Place
This paper proposes a task decomposition and dedicated reward-system-based reinforcement learning algorithm for the Pick-and-Place task, which is one of the high-level tasks of robot manipulators. The proposed method decomposes the Pick-and-Place task into three subtasks: two reaching tasks and one...
Autores principales: | Kim, Byeongjun, Kwon, Gunam, Park, Chaneun, Kwon, Nam Kyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296071/ https://www.ncbi.nlm.nih.gov/pubmed/37366835 http://dx.doi.org/10.3390/biomimetics8020240 |
Ejemplares similares
-
Reward-predictive representations generalize across tasks in reinforcement learning
por: Lehnert, Lucas, et al.
Publicado: (2020) -
Prehensile and Non-Prehensile Robotic Pick-and-Place of Objects in Clutter Using Deep Reinforcement Learning
por: Imtiaz, Muhammad Babar, et al.
Publicado: (2023) -
Inferring reward prediction errors in patients with schizophrenia: a dynamic reward task for reinforcement learning
por: Li, Chia-Tzu, et al.
Publicado: (2014) -
Gaze-Based Intention Estimation for Shared Autonomy in Pick-and-Place Tasks
por: Fuchs, Stefan, et al.
Publicado: (2021) -
Deep-Reinforcement-Learning-Based Object Transportation Using Task Space Decomposition
por: Eoh, Gyuho
Publicado: (2023)