Cargando…

Machine Learning Prediction of Estimated Risk for Bipolar Disorders Using Hippocampal Subfield and Amygdala Nuclei Volumes

The pathophysiology of bipolar disorder (BD) remains mostly unclear. Yet, a valid biomarker is necessary to improve upon the early detection of this serious disorder. Patients with manifest BD display reduced volumes of the hippocampal subfields and amygdala nuclei. In this pre-registered analysis,...

Descripción completa

Detalles Bibliográficos
Autores principales: Huth, Fabian, Tozzi, Leonardo, Marxen, Michael, Riedel, Philipp, Bröckel, Kyra, Martini, Julia, Berndt, Christina, Sauer, Cathrin, Vogelbacher, Christoph, Jansen, Andreas, Kircher, Tilo, Falkenberg, Irina, Thomas-Odenthal, Florian, Lambert, Martin, Kraft, Vivien, Leicht, Gregor, Mulert, Christoph, Fallgatter, Andreas J., Ethofer, Thomas, Rau, Anne, Leopold, Karolina, Bechdolf, Andreas, Reif, Andreas, Matura, Silke, Biere, Silvia, Bermpohl, Felix, Fiebig, Jana, Stamm, Thomas, Correll, Christoph U., Juckel, Georg, Flasbeck, Vera, Ritter, Philipp, Bauer, Michael, Pfennig, Andrea, Mikolas, Pavol
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296102/
https://www.ncbi.nlm.nih.gov/pubmed/37371350
http://dx.doi.org/10.3390/brainsci13060870
_version_ 1785063578301104128
author Huth, Fabian
Tozzi, Leonardo
Marxen, Michael
Riedel, Philipp
Bröckel, Kyra
Martini, Julia
Berndt, Christina
Sauer, Cathrin
Vogelbacher, Christoph
Jansen, Andreas
Kircher, Tilo
Falkenberg, Irina
Thomas-Odenthal, Florian
Lambert, Martin
Kraft, Vivien
Leicht, Gregor
Mulert, Christoph
Fallgatter, Andreas J.
Ethofer, Thomas
Rau, Anne
Leopold, Karolina
Bechdolf, Andreas
Reif, Andreas
Matura, Silke
Biere, Silvia
Bermpohl, Felix
Fiebig, Jana
Stamm, Thomas
Correll, Christoph U.
Juckel, Georg
Flasbeck, Vera
Ritter, Philipp
Bauer, Michael
Pfennig, Andrea
Mikolas, Pavol
author_facet Huth, Fabian
Tozzi, Leonardo
Marxen, Michael
Riedel, Philipp
Bröckel, Kyra
Martini, Julia
Berndt, Christina
Sauer, Cathrin
Vogelbacher, Christoph
Jansen, Andreas
Kircher, Tilo
Falkenberg, Irina
Thomas-Odenthal, Florian
Lambert, Martin
Kraft, Vivien
Leicht, Gregor
Mulert, Christoph
Fallgatter, Andreas J.
Ethofer, Thomas
Rau, Anne
Leopold, Karolina
Bechdolf, Andreas
Reif, Andreas
Matura, Silke
Biere, Silvia
Bermpohl, Felix
Fiebig, Jana
Stamm, Thomas
Correll, Christoph U.
Juckel, Georg
Flasbeck, Vera
Ritter, Philipp
Bauer, Michael
Pfennig, Andrea
Mikolas, Pavol
author_sort Huth, Fabian
collection PubMed
description The pathophysiology of bipolar disorder (BD) remains mostly unclear. Yet, a valid biomarker is necessary to improve upon the early detection of this serious disorder. Patients with manifest BD display reduced volumes of the hippocampal subfields and amygdala nuclei. In this pre-registered analysis, we used structural MRI (n = 271, 7 sites) to compare volumes of hippocampus, amygdala and their subfields/nuclei between help-seeking subjects divided into risk groups for BD as estimated by BPSS-P, BARS and EPIbipolar. We performed between-group comparisons using linear mixed effects models for all three risk assessment tools. Additionally, we aimed to differentiate the risk groups using a linear support vector machine. We found no significant volume differences between the risk groups for all limbic structures during the main analysis. However, the SVM could still classify subjects at risk according to BPSS-P criteria with a balanced accuracy of 66.90% (95% CI 59.2–74.6) for 10-fold cross-validation and 61.9% (95% CI 52.0–71.9) for leave-one-site-out. Structural alterations of the hippocampus and amygdala may not be as pronounced in young people at risk; nonetheless, machine learning can predict the estimated risk for BD above chance. This suggests that neural changes may not merely be a consequence of BD and may have prognostic clinical value.
format Online
Article
Text
id pubmed-10296102
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102961022023-06-28 Machine Learning Prediction of Estimated Risk for Bipolar Disorders Using Hippocampal Subfield and Amygdala Nuclei Volumes Huth, Fabian Tozzi, Leonardo Marxen, Michael Riedel, Philipp Bröckel, Kyra Martini, Julia Berndt, Christina Sauer, Cathrin Vogelbacher, Christoph Jansen, Andreas Kircher, Tilo Falkenberg, Irina Thomas-Odenthal, Florian Lambert, Martin Kraft, Vivien Leicht, Gregor Mulert, Christoph Fallgatter, Andreas J. Ethofer, Thomas Rau, Anne Leopold, Karolina Bechdolf, Andreas Reif, Andreas Matura, Silke Biere, Silvia Bermpohl, Felix Fiebig, Jana Stamm, Thomas Correll, Christoph U. Juckel, Georg Flasbeck, Vera Ritter, Philipp Bauer, Michael Pfennig, Andrea Mikolas, Pavol Brain Sci Article The pathophysiology of bipolar disorder (BD) remains mostly unclear. Yet, a valid biomarker is necessary to improve upon the early detection of this serious disorder. Patients with manifest BD display reduced volumes of the hippocampal subfields and amygdala nuclei. In this pre-registered analysis, we used structural MRI (n = 271, 7 sites) to compare volumes of hippocampus, amygdala and their subfields/nuclei between help-seeking subjects divided into risk groups for BD as estimated by BPSS-P, BARS and EPIbipolar. We performed between-group comparisons using linear mixed effects models for all three risk assessment tools. Additionally, we aimed to differentiate the risk groups using a linear support vector machine. We found no significant volume differences between the risk groups for all limbic structures during the main analysis. However, the SVM could still classify subjects at risk according to BPSS-P criteria with a balanced accuracy of 66.90% (95% CI 59.2–74.6) for 10-fold cross-validation and 61.9% (95% CI 52.0–71.9) for leave-one-site-out. Structural alterations of the hippocampus and amygdala may not be as pronounced in young people at risk; nonetheless, machine learning can predict the estimated risk for BD above chance. This suggests that neural changes may not merely be a consequence of BD and may have prognostic clinical value. MDPI 2023-05-27 /pmc/articles/PMC10296102/ /pubmed/37371350 http://dx.doi.org/10.3390/brainsci13060870 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Huth, Fabian
Tozzi, Leonardo
Marxen, Michael
Riedel, Philipp
Bröckel, Kyra
Martini, Julia
Berndt, Christina
Sauer, Cathrin
Vogelbacher, Christoph
Jansen, Andreas
Kircher, Tilo
Falkenberg, Irina
Thomas-Odenthal, Florian
Lambert, Martin
Kraft, Vivien
Leicht, Gregor
Mulert, Christoph
Fallgatter, Andreas J.
Ethofer, Thomas
Rau, Anne
Leopold, Karolina
Bechdolf, Andreas
Reif, Andreas
Matura, Silke
Biere, Silvia
Bermpohl, Felix
Fiebig, Jana
Stamm, Thomas
Correll, Christoph U.
Juckel, Georg
Flasbeck, Vera
Ritter, Philipp
Bauer, Michael
Pfennig, Andrea
Mikolas, Pavol
Machine Learning Prediction of Estimated Risk for Bipolar Disorders Using Hippocampal Subfield and Amygdala Nuclei Volumes
title Machine Learning Prediction of Estimated Risk for Bipolar Disorders Using Hippocampal Subfield and Amygdala Nuclei Volumes
title_full Machine Learning Prediction of Estimated Risk for Bipolar Disorders Using Hippocampal Subfield and Amygdala Nuclei Volumes
title_fullStr Machine Learning Prediction of Estimated Risk for Bipolar Disorders Using Hippocampal Subfield and Amygdala Nuclei Volumes
title_full_unstemmed Machine Learning Prediction of Estimated Risk for Bipolar Disorders Using Hippocampal Subfield and Amygdala Nuclei Volumes
title_short Machine Learning Prediction of Estimated Risk for Bipolar Disorders Using Hippocampal Subfield and Amygdala Nuclei Volumes
title_sort machine learning prediction of estimated risk for bipolar disorders using hippocampal subfield and amygdala nuclei volumes
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296102/
https://www.ncbi.nlm.nih.gov/pubmed/37371350
http://dx.doi.org/10.3390/brainsci13060870
work_keys_str_mv AT huthfabian machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT tozzileonardo machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT marxenmichael machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT riedelphilipp machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT brockelkyra machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT martinijulia machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT berndtchristina machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT sauercathrin machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT vogelbacherchristoph machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT jansenandreas machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT kirchertilo machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT falkenbergirina machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT thomasodenthalflorian machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT lambertmartin machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT kraftvivien machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT leichtgregor machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT mulertchristoph machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT fallgatterandreasj machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT ethoferthomas machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT rauanne machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT leopoldkarolina machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT bechdolfandreas machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT reifandreas machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT maturasilke machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT bieresilvia machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT bermpohlfelix machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT fiebigjana machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT stammthomas machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT correllchristophu machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT juckelgeorg machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT flasbeckvera machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT ritterphilipp machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT bauermichael machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT pfennigandrea machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes
AT mikolaspavol machinelearningpredictionofestimatedriskforbipolardisordersusinghippocampalsubfieldandamygdalanucleivolumes