Cargando…

A Minimally-Invasive Method for Serial Cerebrospinal Fluid Collection and Injection in Rodents with High Survival Rates

Cerebrospinal fluid (CSF) is an important sample source for diagnosing diseases in the central nervous system (CNS), but collecting and injecting CSF in small animals is technically challenging and often results in high mortality rates. Here, we present a cost-effective and efficient method for acce...

Descripción completa

Detalles Bibliográficos
Autores principales: Han, Jingrong Regina, Yang, Yu, Wu, Tianshu William, Shi, Tao-Tao, Li, Wenlu, Zou, Yilong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296104/
https://www.ncbi.nlm.nih.gov/pubmed/37371704
http://dx.doi.org/10.3390/biomedicines11061609
Descripción
Sumario:Cerebrospinal fluid (CSF) is an important sample source for diagnosing diseases in the central nervous system (CNS), but collecting and injecting CSF in small animals is technically challenging and often results in high mortality rates. Here, we present a cost-effective and efficient method for accessing the CSF in live rodents for fluid collection and infusion purposes. The key element of this protocol is a metal needle tool bent at a unique angle and length, allowing the successful access of the CSF through the foramen magnum. With this method, we can collect 5–10 µL of the CSF from mice and 70–100 µL from rats for downstream analyses, including mass spectrometry. Moreover, our minimally-invasive procedure enables iterative CSF collection from the same animal every few days, representing a significant improvement over prior protocols. Additionally, our method can be used to inject solutions into mice cisterna magna with high success rates and high postoperative recovery rates. In summary, we provide an efficient and minimally-invasive protocol for collecting and infusing reagents into the CSF in live rodents. We envision this protocol will facilitate biomarker discovery and drug development for diseases in the central nervous system.