Cargando…
Assessing the Resilience of Machine Learning Classification Algorithms on SARS-CoV-2 Genome Sequences Generated with Long-Read Specific Errors
The emergence of third-generation single-molecule sequencing (TGS) technology has revolutionized the generation of long reads, which are essential for genome assembly and have been widely employed in sequencing the SARS-CoV-2 virus during the COVID-19 pandemic. Although long-read sequencing has been...
Autores principales: | Sahoo, Bikram, Ali, Sarwan, Chen, Pin-Yu, Patterson, Murray, Zelikovsky, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296223/ https://www.ncbi.nlm.nih.gov/pubmed/37371514 http://dx.doi.org/10.3390/biom13060934 |
Ejemplares similares
-
Benchmarking machine learning robustness in Covid-19 genome sequence classification
por: Ali, Sarwan, et al.
Publicado: (2023) -
Efficient analysis of COVID-19 clinical data using machine learning models
por: Ali, Sarwan, et al.
Publicado: (2022) -
Classification of SARS-CoV-2 and non-SARS-CoV-2 using machine learning algorithms
por: Singh, Om Prakash, et al.
Publicado: (2021) -
EC: an efficient error correction algorithm for short reads
por: Saha, Subrata, et al.
Publicado: (2015) -
A hybrid and scalable error correction algorithm for indel and substitution errors of long reads
por: Das, Arghya Kusum, et al.
Publicado: (2019)