Cargando…
Acetate-Mediated Odorant Receptor OR51E2 Activation Results in Calcitonin Secretion in Parafollicular C-Cells: A Novel Diagnostic Target of Human Medullary Thyroid Cancer
Medullary thyroid cancer originates from parafollicular C-cells in the thyroid. Despite successful thyroidectomy, localizing remnant cancer cells in patients with elevated calcitonin and carcinoembryonic antigen levels remains a challenge. Extranasal odorant receptors are expressed in cells from non...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296248/ https://www.ncbi.nlm.nih.gov/pubmed/37371783 http://dx.doi.org/10.3390/biomedicines11061688 |
_version_ | 1785063613172547584 |
---|---|
author | Lee, Hyeon Jeong Ku, Cheol Ryong Cho, Arthur Cho, TaeHo Lee, ChaeEun Kang, Chan Woo Kim, Daham Cho, Yoon Hee Koo, JaeHyung Lee, Eun Jig |
author_facet | Lee, Hyeon Jeong Ku, Cheol Ryong Cho, Arthur Cho, TaeHo Lee, ChaeEun Kang, Chan Woo Kim, Daham Cho, Yoon Hee Koo, JaeHyung Lee, Eun Jig |
author_sort | Lee, Hyeon Jeong |
collection | PubMed |
description | Medullary thyroid cancer originates from parafollicular C-cells in the thyroid. Despite successful thyroidectomy, localizing remnant cancer cells in patients with elevated calcitonin and carcinoembryonic antigen levels remains a challenge. Extranasal odorant receptors are expressed in cells from non-olfactory tissues, including C-cells. This study evaluates the odorant receptor signals from parafollicular C-cells, specifically, the presence of olfactory marker protein, and further assesses the ability of the protein in localizing and treating medullary thyroid cancer. We used immunohistochemistry, immunofluorescent staining, Western blot, RNA sequencing, and real time-PCR to analyze the expression of odorant receptors in mice thyroids, thyroid cancer cell lines, and patient specimens. We used in vivo assays to analyze acetate binding, calcitonin secretion, and cAMP pathway. We also used positron emission tomography (PET) to assess C(11)-acetate uptake in medullary thyroid cancer patients. We investigated olfactory marker protein expression in C-cells in patients and found that it co-localizes with calcitonin in C-cells from both normal and cancer cell lines. Specifically, we found that OR51E2 and OR51E1 were expressed in thyroid cancer cell lines and human medullary thyroid cancer cells. Furthermore, we found that in the C-cells, the binding of acetate to OR51E2 activates its migration into the nucleus, subsequently resulting in calcitonin secretion via the cAMP pathway. Finally, we found that C(11)-acetate, a positron emission tomography radiotracer analog for acetate, binds competitively to OR51E2. We confirmed C(11)-acetate uptake in cancer cells and in human patients using PET. We demonstrated that acetate binds to OR51E2 in C-cells. Using C(11)-acetate PET, we identified recurrence sites in post-operative medullary thyroid cancer patients. Therefore, OR51E2 may be a novel diagnostic and therapeutic target for medullary thyroid cancer. |
format | Online Article Text |
id | pubmed-10296248 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102962482023-06-28 Acetate-Mediated Odorant Receptor OR51E2 Activation Results in Calcitonin Secretion in Parafollicular C-Cells: A Novel Diagnostic Target of Human Medullary Thyroid Cancer Lee, Hyeon Jeong Ku, Cheol Ryong Cho, Arthur Cho, TaeHo Lee, ChaeEun Kang, Chan Woo Kim, Daham Cho, Yoon Hee Koo, JaeHyung Lee, Eun Jig Biomedicines Article Medullary thyroid cancer originates from parafollicular C-cells in the thyroid. Despite successful thyroidectomy, localizing remnant cancer cells in patients with elevated calcitonin and carcinoembryonic antigen levels remains a challenge. Extranasal odorant receptors are expressed in cells from non-olfactory tissues, including C-cells. This study evaluates the odorant receptor signals from parafollicular C-cells, specifically, the presence of olfactory marker protein, and further assesses the ability of the protein in localizing and treating medullary thyroid cancer. We used immunohistochemistry, immunofluorescent staining, Western blot, RNA sequencing, and real time-PCR to analyze the expression of odorant receptors in mice thyroids, thyroid cancer cell lines, and patient specimens. We used in vivo assays to analyze acetate binding, calcitonin secretion, and cAMP pathway. We also used positron emission tomography (PET) to assess C(11)-acetate uptake in medullary thyroid cancer patients. We investigated olfactory marker protein expression in C-cells in patients and found that it co-localizes with calcitonin in C-cells from both normal and cancer cell lines. Specifically, we found that OR51E2 and OR51E1 were expressed in thyroid cancer cell lines and human medullary thyroid cancer cells. Furthermore, we found that in the C-cells, the binding of acetate to OR51E2 activates its migration into the nucleus, subsequently resulting in calcitonin secretion via the cAMP pathway. Finally, we found that C(11)-acetate, a positron emission tomography radiotracer analog for acetate, binds competitively to OR51E2. We confirmed C(11)-acetate uptake in cancer cells and in human patients using PET. We demonstrated that acetate binds to OR51E2 in C-cells. Using C(11)-acetate PET, we identified recurrence sites in post-operative medullary thyroid cancer patients. Therefore, OR51E2 may be a novel diagnostic and therapeutic target for medullary thyroid cancer. MDPI 2023-06-11 /pmc/articles/PMC10296248/ /pubmed/37371783 http://dx.doi.org/10.3390/biomedicines11061688 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lee, Hyeon Jeong Ku, Cheol Ryong Cho, Arthur Cho, TaeHo Lee, ChaeEun Kang, Chan Woo Kim, Daham Cho, Yoon Hee Koo, JaeHyung Lee, Eun Jig Acetate-Mediated Odorant Receptor OR51E2 Activation Results in Calcitonin Secretion in Parafollicular C-Cells: A Novel Diagnostic Target of Human Medullary Thyroid Cancer |
title | Acetate-Mediated Odorant Receptor OR51E2 Activation Results in Calcitonin Secretion in Parafollicular C-Cells: A Novel Diagnostic Target of Human Medullary Thyroid Cancer |
title_full | Acetate-Mediated Odorant Receptor OR51E2 Activation Results in Calcitonin Secretion in Parafollicular C-Cells: A Novel Diagnostic Target of Human Medullary Thyroid Cancer |
title_fullStr | Acetate-Mediated Odorant Receptor OR51E2 Activation Results in Calcitonin Secretion in Parafollicular C-Cells: A Novel Diagnostic Target of Human Medullary Thyroid Cancer |
title_full_unstemmed | Acetate-Mediated Odorant Receptor OR51E2 Activation Results in Calcitonin Secretion in Parafollicular C-Cells: A Novel Diagnostic Target of Human Medullary Thyroid Cancer |
title_short | Acetate-Mediated Odorant Receptor OR51E2 Activation Results in Calcitonin Secretion in Parafollicular C-Cells: A Novel Diagnostic Target of Human Medullary Thyroid Cancer |
title_sort | acetate-mediated odorant receptor or51e2 activation results in calcitonin secretion in parafollicular c-cells: a novel diagnostic target of human medullary thyroid cancer |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296248/ https://www.ncbi.nlm.nih.gov/pubmed/37371783 http://dx.doi.org/10.3390/biomedicines11061688 |
work_keys_str_mv | AT leehyeonjeong acetatemediatedodorantreceptoror51e2activationresultsincalcitoninsecretioninparafollicularccellsanoveldiagnostictargetofhumanmedullarythyroidcancer AT kucheolryong acetatemediatedodorantreceptoror51e2activationresultsincalcitoninsecretioninparafollicularccellsanoveldiagnostictargetofhumanmedullarythyroidcancer AT choarthur acetatemediatedodorantreceptoror51e2activationresultsincalcitoninsecretioninparafollicularccellsanoveldiagnostictargetofhumanmedullarythyroidcancer AT chotaeho acetatemediatedodorantreceptoror51e2activationresultsincalcitoninsecretioninparafollicularccellsanoveldiagnostictargetofhumanmedullarythyroidcancer AT leechaeeun acetatemediatedodorantreceptoror51e2activationresultsincalcitoninsecretioninparafollicularccellsanoveldiagnostictargetofhumanmedullarythyroidcancer AT kangchanwoo acetatemediatedodorantreceptoror51e2activationresultsincalcitoninsecretioninparafollicularccellsanoveldiagnostictargetofhumanmedullarythyroidcancer AT kimdaham acetatemediatedodorantreceptoror51e2activationresultsincalcitoninsecretioninparafollicularccellsanoveldiagnostictargetofhumanmedullarythyroidcancer AT choyoonhee acetatemediatedodorantreceptoror51e2activationresultsincalcitoninsecretioninparafollicularccellsanoveldiagnostictargetofhumanmedullarythyroidcancer AT koojaehyung acetatemediatedodorantreceptoror51e2activationresultsincalcitoninsecretioninparafollicularccellsanoveldiagnostictargetofhumanmedullarythyroidcancer AT leeeunjig acetatemediatedodorantreceptoror51e2activationresultsincalcitoninsecretioninparafollicularccellsanoveldiagnostictargetofhumanmedullarythyroidcancer |