Cargando…

Mitochondrial Diabetes Is Associated with the ND4 G11696A Mutation

Type 2 diabetes mellitus (T2DM) is a common endocrine disorder which remains a large challenge for clinicians. Previous studies have suggested that mitochondrial dysfunction plays an active role in T2DM progression, but a detailed mechanism is still elusive. In the current study, two Han Chinese fam...

Descripción completa

Detalles Bibliográficos
Autores principales: Ding, Yu, Zhang, Shunrong, Guo, Qinxian, Leng, Jianhang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296257/
https://www.ncbi.nlm.nih.gov/pubmed/37371486
http://dx.doi.org/10.3390/biom13060907
_version_ 1785063615284379648
author Ding, Yu
Zhang, Shunrong
Guo, Qinxian
Leng, Jianhang
author_facet Ding, Yu
Zhang, Shunrong
Guo, Qinxian
Leng, Jianhang
author_sort Ding, Yu
collection PubMed
description Type 2 diabetes mellitus (T2DM) is a common endocrine disorder which remains a large challenge for clinicians. Previous studies have suggested that mitochondrial dysfunction plays an active role in T2DM progression, but a detailed mechanism is still elusive. In the current study, two Han Chinese families with maternally inherited T2DM were evaluated using clinical, genetic, molecular, and biochemical analyses. The mitochondrial genomes were PCR amplified and sequenced. Phylogenetic and bioinformatic analyses were used to assess the potential pathogenicity of mitochondrial DNA (mtDNA) mutations. Interestingly, the matrilineal relatives of these pedigrees exhibited variable severity of T2DM, in particular, the age at onset of T2DM varied from 26 to 65 years, with an average of 49 years. Sequence analysis revealed the presence of ND4 G11696A mutation, which resulted in the substitution of an isoleucine for valine at amino acid (AA) position 312. Indeed, this mutation was present in homoplasmy only in the maternal lineage, not in other members of these families, as well as 200 controls. Furthermore, the m.C5601T in the tRNA(Ala) and novel m.T5813C in the tRNA(Cys), showing high evolutional conservation, may contribute to the phenotypic expression of ND4 G11696A mutation. In addition, biochemical analysis revealed that cells with ND4 G11696A mutation exhibited higher levels of reactive oxygen species (ROS) productions than the controls. In contrast, the levels of mitochondrial membrane potential (MMP), ATP, mtDNA copy number (mtDNA-CN), Complex I activity, and NAD(+)/NADH ratio significantly decreased in cell lines carrying the m.G11696A and tRNA mutations, suggesting that these mutations affected the respiratory chain function and led to mitochondrial dysfunction that was involved in T2DM. Thus, our study broadened the clinical phenotypes of m.G11696A mutation.
format Online
Article
Text
id pubmed-10296257
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102962572023-06-28 Mitochondrial Diabetes Is Associated with the ND4 G11696A Mutation Ding, Yu Zhang, Shunrong Guo, Qinxian Leng, Jianhang Biomolecules Article Type 2 diabetes mellitus (T2DM) is a common endocrine disorder which remains a large challenge for clinicians. Previous studies have suggested that mitochondrial dysfunction plays an active role in T2DM progression, but a detailed mechanism is still elusive. In the current study, two Han Chinese families with maternally inherited T2DM were evaluated using clinical, genetic, molecular, and biochemical analyses. The mitochondrial genomes were PCR amplified and sequenced. Phylogenetic and bioinformatic analyses were used to assess the potential pathogenicity of mitochondrial DNA (mtDNA) mutations. Interestingly, the matrilineal relatives of these pedigrees exhibited variable severity of T2DM, in particular, the age at onset of T2DM varied from 26 to 65 years, with an average of 49 years. Sequence analysis revealed the presence of ND4 G11696A mutation, which resulted in the substitution of an isoleucine for valine at amino acid (AA) position 312. Indeed, this mutation was present in homoplasmy only in the maternal lineage, not in other members of these families, as well as 200 controls. Furthermore, the m.C5601T in the tRNA(Ala) and novel m.T5813C in the tRNA(Cys), showing high evolutional conservation, may contribute to the phenotypic expression of ND4 G11696A mutation. In addition, biochemical analysis revealed that cells with ND4 G11696A mutation exhibited higher levels of reactive oxygen species (ROS) productions than the controls. In contrast, the levels of mitochondrial membrane potential (MMP), ATP, mtDNA copy number (mtDNA-CN), Complex I activity, and NAD(+)/NADH ratio significantly decreased in cell lines carrying the m.G11696A and tRNA mutations, suggesting that these mutations affected the respiratory chain function and led to mitochondrial dysfunction that was involved in T2DM. Thus, our study broadened the clinical phenotypes of m.G11696A mutation. MDPI 2023-05-30 /pmc/articles/PMC10296257/ /pubmed/37371486 http://dx.doi.org/10.3390/biom13060907 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Ding, Yu
Zhang, Shunrong
Guo, Qinxian
Leng, Jianhang
Mitochondrial Diabetes Is Associated with the ND4 G11696A Mutation
title Mitochondrial Diabetes Is Associated with the ND4 G11696A Mutation
title_full Mitochondrial Diabetes Is Associated with the ND4 G11696A Mutation
title_fullStr Mitochondrial Diabetes Is Associated with the ND4 G11696A Mutation
title_full_unstemmed Mitochondrial Diabetes Is Associated with the ND4 G11696A Mutation
title_short Mitochondrial Diabetes Is Associated with the ND4 G11696A Mutation
title_sort mitochondrial diabetes is associated with the nd4 g11696a mutation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296257/
https://www.ncbi.nlm.nih.gov/pubmed/37371486
http://dx.doi.org/10.3390/biom13060907
work_keys_str_mv AT dingyu mitochondrialdiabetesisassociatedwiththend4g11696amutation
AT zhangshunrong mitochondrialdiabetesisassociatedwiththend4g11696amutation
AT guoqinxian mitochondrialdiabetesisassociatedwiththend4g11696amutation
AT lengjianhang mitochondrialdiabetesisassociatedwiththend4g11696amutation