Cargando…
SPIN-AI: A Deep Learning Model That Identifies Spatially Predictive Genes
Spatially resolved sequencing technologies help us dissect how cells are organized in space. Several available computational approaches focus on the identification of spatially variable genes (SVGs), genes whose expression patterns vary in space. The detection of SVGs is analogous to the identificat...
Autores principales: | Meng-Lin, Kevin, Ung, Choong-Yong, Zhang, Cheng, Weiskittel, Taylor M., Wisniewski, Philip, Zhang, Zhuofei, Tan, Shyang-Hong, Yeo, Kok-Siong, Zhu, Shizhen, Correia, Cristina, Li, Hu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296445/ https://www.ncbi.nlm.nih.gov/pubmed/37371475 http://dx.doi.org/10.3390/biom13060895 |
Ejemplares similares
-
A Knowledge-Based Discovery Approach Couples Artificial Neural Networks With Weight Engineering to Uncover Immune-Related Processes Underpinning Clinical Traits of Breast Cancer
por: Zhang, Cheng, et al.
Publicado: (2022) -
Gene utility recapitulates chromosomal aberrancies in advanced stage neuroblastoma
por: Ung, Choong Y., et al.
Publicado: (2022) -
Network Biology-Inspired Machine Learning Features Predict Cancer Gene Targets and Reveal Target Coordinating Mechanisms
por: Weiskittel, Taylor M., et al.
Publicado: (2023) -
De novo individualized disease modules reveal the synthetic penetrance of genes and inform personalized treatment regimens
por: Weiskittel, Taylor M., et al.
Publicado: (2022) -
Machine Learning and Systems Biology Approaches to Characterize Dosage-Based Gene Dependencies in Cancer Cells
por: Meng-Lin, Kevin, et al.
Publicado: (2021)