Cargando…

Staphylococcus aureus Detection in Milk Using a Thickness Shear Mode Acoustic Aptasensor with an Antifouling Probe Linker

Contamination of food by pathogens can pose a serious risk to health. Therefore, monitoring for the presence of pathogens is critical to identify and regulate microbiological contamination of food. In this work, an aptasensor based on a thickness shear mode acoustic method (TSM) with dissipation mon...

Descripción completa

Detalles Bibliográficos
Autores principales: Spagnolo, Sandro, Davoudian, Katharina, De La Franier, Brian, Hianik, Tibor, Thompson, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296631/
https://www.ncbi.nlm.nih.gov/pubmed/37366979
http://dx.doi.org/10.3390/bios13060614
Descripción
Sumario:Contamination of food by pathogens can pose a serious risk to health. Therefore, monitoring for the presence of pathogens is critical to identify and regulate microbiological contamination of food. In this work, an aptasensor based on a thickness shear mode acoustic method (TSM) with dissipation monitoring was developed to detect and quantify Staphylococcus aureus directly in whole UHT cow’s milk. The frequency variation and dissipation data demonstrated the correct immobilization of the components. The analysis of viscoelastic properties suggests that DNA aptamers bind to the surface in a non-dense manner, which favors the binding with bacteria. The aptasensor demonstrated high sensitivity and was able to detect S. aureus in milk with a 33 CFU/mL limit of detection. Analysis was successful in milk due to the sensor’s antifouling properties, which is based on 3-dithiothreitol propanoic acid (DTT(COOH)) antifouling thiol linker. Compared to bare and modified (dithiothreitol (DTT), 11-mercaptoundecanoic acid (MUA), and 1-undecanethiol (UDT)) quartz crystals, the sensitivity of the sensor’s antifouling in milk improved by about 82–96%. The excellent sensitivity and ability to detect and quantify S. aureus in whole UHT cow’s milk demonstrates that the system is applicable for rapid and efficient analysis of milk safety.