Cargando…
Deep Learning- and Expert Knowledge-Based Feature Extraction and Performance Evaluation in Breast Histopathology Images
SIMPLE SUMMARY: Breast cancer is one of the leading causes of cancer death among women. Developing machine learning-based diagnosis models receives great attention from researchers and scientists using histopathology images. Deep learning (DL) algorithms automatically extract features from raw data...
Autores principales: | Kode, Hepseeba, Barkana, Buket D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296694/ https://www.ncbi.nlm.nih.gov/pubmed/37370687 http://dx.doi.org/10.3390/cancers15123075 |
Ejemplares similares
-
A Comprehensive Review of Computer-Aided Models for Breast Cancer Diagnosis Using Histopathology Images
por: Labrada, Alberto, et al.
Publicado: (2023) -
New transformed features generated by deep bottleneck extractor and a GMM–UBM classifier for speaker age and gender classification
por: Mallouh, Arafat Abu, et al.
Publicado: (2017) -
Strategies to Reduce the Expert Supervision Required for Deep Learning-Based Segmentation of Histopathological Images
por: Van Eycke, Yves-Rémi, et al.
Publicado: (2019) -
Towards frequency adaptation for delayed feedback deep brain stimulations
por: Daneshzand, Mohammad, et al.
Publicado: (2018) -
Robust desynchronization of Parkinson’s disease pathological oscillations by frequency modulation of delayed feedback deep brain stimulation
por: Daneshzand, Mohammad, et al.
Publicado: (2018)