Cargando…
Unconventional Source of Neurotoxic Protein Aggregation from Organelle Off-Target Bax∆2 in Alzheimer’s Disease
Protein aggregates are a hallmark of Alzheimer’s disease (AD). Extensive studies have focused on β-amyloid plaques and Tau tangles. Here, we illustrate a novel source of protein aggregates in AD neurons from organelle off-target proteins. Bax is a mitochondrial pore-forming pro-death protein. What h...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296721/ https://www.ncbi.nlm.nih.gov/pubmed/37371550 http://dx.doi.org/10.3390/biom13060970 |
Sumario: | Protein aggregates are a hallmark of Alzheimer’s disease (AD). Extensive studies have focused on β-amyloid plaques and Tau tangles. Here, we illustrate a novel source of protein aggregates in AD neurons from organelle off-target proteins. Bax is a mitochondrial pore-forming pro-death protein. What happens to Bax if it fails to target mitochondria? We previously showed that a mitochondrial target-deficient alternatively spliced variant, Bax∆2, formed large cytosolic protein aggregates and triggered caspase 8-mediated cell death. Bax∆2 protein levels were low in most normal organs and the proteins were quickly degraded in cancer. Here, we found that 85% of AD patients had Bax∆2 required alternative splicing. Increased Bax∆2 proteins were mostly accumulated in neurons of AD-susceptible brain regions. Intracellularly, Bax∆2 aggregates distributed independently of Tau tangles. Interestingly, Bax∆2 aggregates triggered the formation of stress granules (SGs), a large protein-RNA complex involved in AD pathogenesis. Although the functional domains required for aggregation and cell death are the same as in cancer cells, Bax∆2 relied on SGs, not caspase 8, for neuronal cell death. These results imply that the aggregation of organelle off-target proteins, such as Bax∆2, broadens the scope of traditional AD pathogenic proteins that contribute to the neuronal stress responses and AD pathogenesis. |
---|