Cargando…
Shaped-Charge Learning Architecture for the Human–Machine Teams
In spite of great progress in recent years, deep learning (DNN) and transformers have strong limitations for supporting human–machine teams due to a lack of explainability, information on what exactly was generalized, and machinery to be integrated with various reasoning techniques, and weak defense...
Autores principales: | Galitsky, Boris, Ilvovsky, Dmitry, Goldberg, Saveli |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296790/ https://www.ncbi.nlm.nih.gov/pubmed/37372268 http://dx.doi.org/10.3390/e25060924 |
Ejemplares similares
-
Applications of Shaped-Charge Learning
por: Galitsky, Boris
Publicado: (2023) -
Using machine learning for healthcare treatment planning
por: Dubey, Snigdha, et al.
Publicado: (2023) -
Developing enterprise chatbots: learning linguistic structures
por: Galitsky, Boris
Publicado: (2019) -
Machine Learning and Student Performance in Teams
por: Ahuja, Rohan, et al.
Publicado: (2020) -
Research on structural parameter optimization of elliptical bipolar linear shaped charge based on machine learning
por: Wu, Bo, et al.
Publicado: (2022)