Cargando…

Boosted Binary Quantum Classifier via Graphical Kernel

In terms of the logical structure of data in machine learning (ML), we apply a novel graphical encoding method in quantum computing to build the mapping between feature space of sample data and two-level nested graph state that presents a kind of multi-partite entanglement state. By implementing swa...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yuan, Huang, Duan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296799/
https://www.ncbi.nlm.nih.gov/pubmed/37372214
http://dx.doi.org/10.3390/e25060870
Descripción
Sumario:In terms of the logical structure of data in machine learning (ML), we apply a novel graphical encoding method in quantum computing to build the mapping between feature space of sample data and two-level nested graph state that presents a kind of multi-partite entanglement state. By implementing swap-test circuit on the graphical training states, a binary quantum classifier to large-scale test states is effectively realized in this paper. In addition, for the error classification caused by noise, we further explored the subsequent processing scheme by adjusting the weights so that a strong classifier is formed and its accuracy is greatly boosted. In this paper, the proposed boosting algorithm demonstrates superiority in certain aspects as demonstrated via experimental investigation. This work further enriches the theoretical foundation of quantum graph theory and quantum machine learning, which may be exploited to assist the classification of massive-data networks by entangling subgraphs.