Cargando…
Identifying Candidate Gene–Disease Associations via Graph Neural Networks
Real-world objects are usually defined in terms of their own relationships or connections. A graph (or network) naturally expresses this model though nodes and edges. In biology, depending on what the nodes and edges represent, we may classify several types of networks, gene–disease associations (GD...
Autores principales: | Cinaglia, Pietro, Cannataro, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296901/ https://www.ncbi.nlm.nih.gov/pubmed/37372253 http://dx.doi.org/10.3390/e25060909 |
Ejemplares similares
-
Forecasting COVID-19 Epidemic Trends by Combining a Neural Network with R(t) Estimation
por: Cinaglia, Pietro, et al.
Publicado: (2022) -
Multilayer network alignment based on topological assessment via embeddings
por: Cinaglia, Pietro, et al.
Publicado: (2023) -
A Method Based on Temporal Embedding for the Pairwise Alignment of Dynamic Networks
por: Cinaglia, Pietro, et al.
Publicado: (2023) -
Aligning Cross-Species Interactomes for Studying Complex and Chronic Diseases
por: Milano, Marianna, et al.
Publicado: (2023) -
XGDAG: explainable gene–disease associations via graph neural networks
por: Mastropietro, Andrea, et al.
Publicado: (2023)