Cargando…
Feature Screening for High-Dimensional Variable Selection in Generalized Linear Models
The two-stage feature screening method for linear models applies dimension reduction at first stage to screen out nuisance features and dramatically reduce the dimension to a moderate size; at the second stage, penalized methods such as LASSO and SCAD could be applied for feature selection. A majori...
Autores principales: | Jiang, Jinzhu, Shang, Junfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296932/ https://www.ncbi.nlm.nih.gov/pubmed/37372195 http://dx.doi.org/10.3390/e25060851 |
Ejemplares similares
-
Efficient penalized generalized linear mixed models for variable selection and genetic risk prediction in high-dimensional data
por: St-Pierre, Julien, et al.
Publicado: (2023) -
Variable Selection Using Nonlocal Priors in High-Dimensional Generalized Linear Models With Application to fMRI Data Analysis
por: Cao, Xuan, et al.
Publicado: (2020) -
BOSO: A novel feature selection algorithm for linear regression with high-dimensional data
por: Valcárcel, Luis V., et al.
Publicado: (2022) -
Optimal errors and phase transitions in high-dimensional generalized linear models
por: Barbier, Jean, et al.
Publicado: (2019) -
A Regularization-Based Adaptive Test for High-Dimensional Generalized Linear Models
por: Wu, Chong, et al.
Publicado: (2020)