Cargando…

Analysis of Positive Results of (18)F-FDG PET/CT Imaging after Hematopoietic Stem Cell Transplantation in Lymphoma

Purpose: The purpose of this study was to differentiate between false-positive and true-positive positron emission tomography (PET) results after hematopoietic stem cell transplantation (SCT) for lymphoma involvement by analyzing several clinical variables and specific imaging features. Patients and...

Descripción completa

Detalles Bibliográficos
Autores principales: Dai, Na, Cai, Rongcui, Deng, Shengming, Sang, Shibiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10296960/
https://www.ncbi.nlm.nih.gov/pubmed/37370922
http://dx.doi.org/10.3390/diagnostics13122027
Descripción
Sumario:Purpose: The purpose of this study was to differentiate between false-positive and true-positive positron emission tomography (PET) results after hematopoietic stem cell transplantation (SCT) for lymphoma involvement by analyzing several clinical variables and specific imaging features. Patients and Methods: Patients with lymphoma who received SCT and underwent post-transplantation (18)F-FDG PET/CT scans between January 2013 and April 2021 at our institution were included. Associations between PET positivity and related clinical information were assessed using t-tests and χ(2) tests. The significance of variables differentiating benign lesions from malignant FDG-avid lesions was evaluated by logistic regression analysis. Survival probabilities were derived from Kaplan-Meier curves and compared using the log-rank test. Results: A total of 185 patients (235 post-transplantation PET/CT scans) were enrolled in our present study. Compared with those with true-positive PET results, patients with false-positive PET results exhibited a better prognosis. For the autologous SCT group, false-positive cases were more commonly seen when FDG-avid foci appeared outside the sites of the original disease (p = 0.004), and the integrated CT imaging showed negative results (p = 0.000). In multivariate logistic regression analysis, integrated CT results were the only significant factor. For the allogeneic SCT group, false-positive cases were significantly more commonly seen when DS = 4 (p = 0.046), FDG-avid foci appeared outside the sites of the original disease (p = 0.022), and the integrated CT imaging showed negative results (p = 0.001). In a multivariate logistic regression analysis, whether FDG-avid foci were in the sites of the original disease and integrated CT results were both significant factors. Conclusion: False-positive FDG uptake in post-transplantation PET was not uncommon. Several variables could provide an important reference to differentiate false-positive from true-positive post-SCT PET results for lymphoma involvement. Trial registration number: ChiCTR2300067355.