Cargando…
Predicting the Popularity of Information on Social Platforms without Underlying Network Structure
The ability to predict the size of information cascades in online social networks is crucial for various applications, including decision-making and viral marketing. However, traditional methods either rely on complicated time-varying features that are challenging to extract from multilingual and cr...
Autores principales: | Wu, Leilei, Yi, Lingling, Ren, Xiao-Long, Lü, Linyuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297014/ https://www.ncbi.nlm.nih.gov/pubmed/37372260 http://dx.doi.org/10.3390/e25060916 |
Ejemplares similares
-
Social Media in Dermatology and an Overview of Popular Social Media Platforms
por: Szeto, Mindy D., et al.
Publicado: (2021) -
Efficient network disintegration under incomplete information: the comic effect of link prediction
por: Tan, Suo-Yi, et al.
Publicado: (2016) -
Mechanistic modelling of viral spreading on empirical social network and popularity prediction
por: Ma, Sijuan, et al.
Publicado: (2018) -
Popularization of Medical Information
por: Lee, Jisan, et al.
Publicado: (2021) -
Predicting Key Events in the Popularity Evolution of Online Information
por: Hu, Ying, et al.
Publicado: (2017)