Cargando…
NeuPD—A Neural Network-Based Approach to Predict Antineoplastic Drug Response
With the beginning of the high-throughput screening, in silico-based drug response analysis has opened lots of research avenues in the field of personalized medicine. For a decade, many different predicting techniques have been recommended for the antineoplastic (anti-cancer) drug response, but stil...
Autores principales: | Shahzad, Muhammad, Tahir, Muhammad Atif, Alhussein, Musaed, Mobin, Ansharah, Shams Malick, Rauf Ahmed, Anwar, Muhammad Shahid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297062/ https://www.ncbi.nlm.nih.gov/pubmed/37370938 http://dx.doi.org/10.3390/diagnostics13122043 |
Ejemplares similares
-
Deep residual-dense network based on bidirectional recurrent neural network for atrial fibrillation detection
por: Laghari, Asif Ali, et al.
Publicado: (2023) -
Multi-horizon short-term load forecasting using hybrid of LSTM and modified split convolution
por: Ullah, Irshad, et al.
Publicado: (2023) -
Internet of Things-based sustainable environment management for large indoor facilities
por: Lashari, Muhammad Hanif, et al.
Publicado: (2023) -
A classifier model for prostate cancer diagnosis using CNNs and transfer learning with multi-parametric MRI
por: Mehmood, Mubashar, et al.
Publicado: (2023) -
Ocular complications of antineoplastic therapies
por: Bader, Abbas, et al.
Publicado: (2023)