Cargando…
The Structure Entropy-Based Node Importance Ranking Method for Graph Data
Due to its wide application across many disciplines, how to make an efficient ranking for nodes in graph data has become an urgent topic. It is well-known that most classical methods only consider the local structure information of nodes, but ignore the global structure information of graph data. In...
Autores principales: | Liu, Shihu, Gao, Haiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297072/ https://www.ncbi.nlm.nih.gov/pubmed/37372285 http://dx.doi.org/10.3390/e25060941 |
Ejemplares similares
-
The Self-Information Weighting-Based Node Importance Ranking Method for Graph Data
por: Liu, Shihu, et al.
Publicado: (2022) -
Relative Entropy of Distance Distribution Based Similarity Measure of Nodes in Weighted Graph Data
por: Liu, Shihu, et al.
Publicado: (2022) -
A Novel Method to Rank Influential Nodes in Complex Networks Based on Tsallis Entropy
por: Chen, Xuegong, et al.
Publicado: (2020) -
Ranking Regions, Edges and Classifying Tasks in Functional Brain Graphs by Sub-Graph Entropy
por: Sen, Bhaskar, et al.
Publicado: (2019) -
Identifying Important Nodes in Complex Networks Based on Node Propagation Entropy
por: Yu, Yong, et al.
Publicado: (2022)