Cargando…
The Utilization of Machine Learning Algorithms for Assisting Physicians in the Diagnosis of Diabetes
This paper investigates the use of machine learning algorithms to aid medical professionals in the detection and risk assessment of diabetes. The research employed a dataset gathered from individuals with type 2 diabetes in Ninh Binh, Vietnam. A variety of classification algorithms, including Decisi...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297119/ https://www.ncbi.nlm.nih.gov/pubmed/37370981 http://dx.doi.org/10.3390/diagnostics13122087 |
_version_ | 1785063807996919808 |
---|---|
author | Nguyen, Linh Phuong Tung, Do Dinh Nguyen, Duong Thanh Le, Hong Nhung Tran, Toan Quoc Binh, Ta Van Pham, Dung Thuy Nguyen |
author_facet | Nguyen, Linh Phuong Tung, Do Dinh Nguyen, Duong Thanh Le, Hong Nhung Tran, Toan Quoc Binh, Ta Van Pham, Dung Thuy Nguyen |
author_sort | Nguyen, Linh Phuong |
collection | PubMed |
description | This paper investigates the use of machine learning algorithms to aid medical professionals in the detection and risk assessment of diabetes. The research employed a dataset gathered from individuals with type 2 diabetes in Ninh Binh, Vietnam. A variety of classification algorithms, including Decision Tree Classifier, Logistic Regression, SVC, Ada Boost Classifier, Gradient Boosting Classifier, Random Forest Classifier, and K Neighbors Classifier, were utilized to identify the most suitable algorithm for the dataset. The results of the present study indicate that the Random Forest Classifier algorithm yielded the most promising results, exhibiting a cross-validation score of 0.998 and an accuracy rate of 100%. To further evaluate the effectiveness of the selected model, it was subjected to a testing phase involving a new dataset comprising 67 patients that had not been previously seen. The performance of the algorithm on this dataset resulted in an accuracy rate of 94%, especially the study’s notable finding is the algorithm’s accurate prediction of the probability of patients developing diabetes, as indicated by the class 1 (diabetes) probabilities. This innovative approach offers a meticulous and quantifiable method for diabetes detection and risk evaluation, showcasing the potential of machine learning algorithms in assisting clinicians with diagnosis and management. By communicating the diabetes score and probability estimates to patients, the comprehension of their disease status can be enhanced. This information empowers patients to make informed decisions and motivates them to adopt healthier lifestyle habits, ultimately playing a crucial role in impeding disease progression. The study underscores the significance of leveraging machine learning in healthcare to optimize patient care and improve long-term health outcomes. |
format | Online Article Text |
id | pubmed-10297119 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102971192023-06-28 The Utilization of Machine Learning Algorithms for Assisting Physicians in the Diagnosis of Diabetes Nguyen, Linh Phuong Tung, Do Dinh Nguyen, Duong Thanh Le, Hong Nhung Tran, Toan Quoc Binh, Ta Van Pham, Dung Thuy Nguyen Diagnostics (Basel) Article This paper investigates the use of machine learning algorithms to aid medical professionals in the detection and risk assessment of diabetes. The research employed a dataset gathered from individuals with type 2 diabetes in Ninh Binh, Vietnam. A variety of classification algorithms, including Decision Tree Classifier, Logistic Regression, SVC, Ada Boost Classifier, Gradient Boosting Classifier, Random Forest Classifier, and K Neighbors Classifier, were utilized to identify the most suitable algorithm for the dataset. The results of the present study indicate that the Random Forest Classifier algorithm yielded the most promising results, exhibiting a cross-validation score of 0.998 and an accuracy rate of 100%. To further evaluate the effectiveness of the selected model, it was subjected to a testing phase involving a new dataset comprising 67 patients that had not been previously seen. The performance of the algorithm on this dataset resulted in an accuracy rate of 94%, especially the study’s notable finding is the algorithm’s accurate prediction of the probability of patients developing diabetes, as indicated by the class 1 (diabetes) probabilities. This innovative approach offers a meticulous and quantifiable method for diabetes detection and risk evaluation, showcasing the potential of machine learning algorithms in assisting clinicians with diagnosis and management. By communicating the diabetes score and probability estimates to patients, the comprehension of their disease status can be enhanced. This information empowers patients to make informed decisions and motivates them to adopt healthier lifestyle habits, ultimately playing a crucial role in impeding disease progression. The study underscores the significance of leveraging machine learning in healthcare to optimize patient care and improve long-term health outcomes. MDPI 2023-06-16 /pmc/articles/PMC10297119/ /pubmed/37370981 http://dx.doi.org/10.3390/diagnostics13122087 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Nguyen, Linh Phuong Tung, Do Dinh Nguyen, Duong Thanh Le, Hong Nhung Tran, Toan Quoc Binh, Ta Van Pham, Dung Thuy Nguyen The Utilization of Machine Learning Algorithms for Assisting Physicians in the Diagnosis of Diabetes |
title | The Utilization of Machine Learning Algorithms for Assisting Physicians in the Diagnosis of Diabetes |
title_full | The Utilization of Machine Learning Algorithms for Assisting Physicians in the Diagnosis of Diabetes |
title_fullStr | The Utilization of Machine Learning Algorithms for Assisting Physicians in the Diagnosis of Diabetes |
title_full_unstemmed | The Utilization of Machine Learning Algorithms for Assisting Physicians in the Diagnosis of Diabetes |
title_short | The Utilization of Machine Learning Algorithms for Assisting Physicians in the Diagnosis of Diabetes |
title_sort | utilization of machine learning algorithms for assisting physicians in the diagnosis of diabetes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297119/ https://www.ncbi.nlm.nih.gov/pubmed/37370981 http://dx.doi.org/10.3390/diagnostics13122087 |
work_keys_str_mv | AT nguyenlinhphuong theutilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT tungdodinh theutilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT nguyenduongthanh theutilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT lehongnhung theutilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT trantoanquoc theutilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT binhtavan theutilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT phamdungthuynguyen theutilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT nguyenlinhphuong utilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT tungdodinh utilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT nguyenduongthanh utilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT lehongnhung utilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT trantoanquoc utilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT binhtavan utilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes AT phamdungthuynguyen utilizationofmachinelearningalgorithmsforassistingphysiciansinthediagnosisofdiabetes |