Cargando…

An Observation-Driven Random Parameter INAR(1) Model Based on the Poisson Thinning Operator

This paper presents a first-order integer-valued autoregressive time series model featuring observation-driven parameters that may adhere to a particular random distribution. We derive the ergodicity of the model as well as the theoretical properties of point estimation, interval estimation, and par...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Kaizhi, Tao, Tielai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297222/
https://www.ncbi.nlm.nih.gov/pubmed/37372203
http://dx.doi.org/10.3390/e25060859
Descripción
Sumario:This paper presents a first-order integer-valued autoregressive time series model featuring observation-driven parameters that may adhere to a particular random distribution. We derive the ergodicity of the model as well as the theoretical properties of point estimation, interval estimation, and parameter testing. The properties are verified through numerical simulations. Lastly, we demonstrate the application of this model using real-world datasets.