Cargando…
An Observation-Driven Random Parameter INAR(1) Model Based on the Poisson Thinning Operator
This paper presents a first-order integer-valued autoregressive time series model featuring observation-driven parameters that may adhere to a particular random distribution. We derive the ergodicity of the model as well as the theoretical properties of point estimation, interval estimation, and par...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297222/ https://www.ncbi.nlm.nih.gov/pubmed/37372203 http://dx.doi.org/10.3390/e25060859 |
_version_ | 1785063832320737280 |
---|---|
author | Yu, Kaizhi Tao, Tielai |
author_facet | Yu, Kaizhi Tao, Tielai |
author_sort | Yu, Kaizhi |
collection | PubMed |
description | This paper presents a first-order integer-valued autoregressive time series model featuring observation-driven parameters that may adhere to a particular random distribution. We derive the ergodicity of the model as well as the theoretical properties of point estimation, interval estimation, and parameter testing. The properties are verified through numerical simulations. Lastly, we demonstrate the application of this model using real-world datasets. |
format | Online Article Text |
id | pubmed-10297222 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102972222023-06-28 An Observation-Driven Random Parameter INAR(1) Model Based on the Poisson Thinning Operator Yu, Kaizhi Tao, Tielai Entropy (Basel) Article This paper presents a first-order integer-valued autoregressive time series model featuring observation-driven parameters that may adhere to a particular random distribution. We derive the ergodicity of the model as well as the theoretical properties of point estimation, interval estimation, and parameter testing. The properties are verified through numerical simulations. Lastly, we demonstrate the application of this model using real-world datasets. MDPI 2023-05-27 /pmc/articles/PMC10297222/ /pubmed/37372203 http://dx.doi.org/10.3390/e25060859 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yu, Kaizhi Tao, Tielai An Observation-Driven Random Parameter INAR(1) Model Based on the Poisson Thinning Operator |
title | An Observation-Driven Random Parameter INAR(1) Model Based on the Poisson Thinning Operator |
title_full | An Observation-Driven Random Parameter INAR(1) Model Based on the Poisson Thinning Operator |
title_fullStr | An Observation-Driven Random Parameter INAR(1) Model Based on the Poisson Thinning Operator |
title_full_unstemmed | An Observation-Driven Random Parameter INAR(1) Model Based on the Poisson Thinning Operator |
title_short | An Observation-Driven Random Parameter INAR(1) Model Based on the Poisson Thinning Operator |
title_sort | observation-driven random parameter inar(1) model based on the poisson thinning operator |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297222/ https://www.ncbi.nlm.nih.gov/pubmed/37372203 http://dx.doi.org/10.3390/e25060859 |
work_keys_str_mv | AT yukaizhi anobservationdrivenrandomparameterinar1modelbasedonthepoissonthinningoperator AT taotielai anobservationdrivenrandomparameterinar1modelbasedonthepoissonthinningoperator AT yukaizhi observationdrivenrandomparameterinar1modelbasedonthepoissonthinningoperator AT taotielai observationdrivenrandomparameterinar1modelbasedonthepoissonthinningoperator |