Cargando…
Unsupervised Low-Light Image Enhancement Based on Generative Adversarial Network
Low-light image enhancement aims to improve the perceptual quality of images captured under low-light conditions. This paper proposes a novel generative adversarial network to enhance low-light image quality. Firstly, it designs a generator consisting of residual modules with hybrid attention module...
Autores principales: | Yu, Wenshuo, Zhao, Liquan, Zhong, Tie |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297228/ https://www.ncbi.nlm.nih.gov/pubmed/37372276 http://dx.doi.org/10.3390/e25060932 |
Ejemplares similares
-
Remote Sensing Image Dehazing through an Unsupervised Generative Adversarial Network
por: Zhao, Liquan, et al.
Publicado: (2023) -
Low-Light Image Enhancement Based on Generative Adversarial Network
por: Abirami R., Nandhini, et al.
Publicado: (2021) -
Cyclic Generative Attention-Adversarial Network for Low-Light Image Enhancement
por: Zhen, Tong, et al.
Publicado: (2023) -
Unsupervised anomaly detection with generative adversarial networks in mammography
por: Park, Seungju, et al.
Publicado: (2023) -
A Novel DenseNet Generative Adversarial Network for Heterogenous Low-Light Image Enhancement
por: Zhang, Jingsi, et al.
Publicado: (2021)