Cargando…
Hierarchical Wilson–Cowan Models and Connection Matrices
This work aims to study the interplay between the Wilson–Cowan model and connection matrices. These matrices describe cortical neural wiring, while Wilson–Cowan equations provide a dynamical description of neural interaction. We formulate Wilson–Cowan equations on locally compact Abelian groups. We...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297397/ https://www.ncbi.nlm.nih.gov/pubmed/37372293 http://dx.doi.org/10.3390/e25060949 |
Sumario: | This work aims to study the interplay between the Wilson–Cowan model and connection matrices. These matrices describe cortical neural wiring, while Wilson–Cowan equations provide a dynamical description of neural interaction. We formulate Wilson–Cowan equations on locally compact Abelian groups. We show that the Cauchy problem is well posed. We then select a type of group that allows us to incorporate the experimental information provided by the connection matrices. We argue that the classical Wilson–Cowan model is incompatible with the small-world property. A necessary condition to have this property is that the Wilson–Cowan equations be formulated on a compact group. We propose a p-adic version of the Wilson–Cowan model, a hierarchical version in which the neurons are organized into an infinite rooted tree. We present several numerical simulations showing that the p-adic version matches the predictions of the classical version in relevant experiments. The p-adic version allows the incorporation of the connection matrices into the Wilson–Cowan model. We present several numerical simulations using a neural network model that incorporates a p-adic approximation of the connection matrix of the cat cortex. |
---|