Cargando…
Attention-Based Spatial–Temporal Convolution Gated Recurrent Unit for Traffic Flow Forecasting
Accurate traffic flow forecasting is very important for urban planning and traffic management. However, this is a huge challenge due to the complex spatial–temporal relationships. Although the existing methods have researched spatial–temporal relationships, they neglect the long periodic aspects of...
Autores principales: | Zhang, Qingyong, Chang, Wanfeng, Yin, Conghui, Xiao, Peng, Li, Kelei, Tan, Meifang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297431/ https://www.ncbi.nlm.nih.gov/pubmed/37372282 http://dx.doi.org/10.3390/e25060938 |
Ejemplares similares
-
Spatial-temporal hypergraph convolutional network for traffic forecasting
por: Zhao, Zhenzhen, et al.
Publicado: (2023) -
Cross-Attention Fusion Based Spatial-Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction
por: Yu, Kun, et al.
Publicado: (2021) -
Traffic Flow Prediction Model Based on the Combination of Improved Gated Recurrent Unit and Graph Convolutional Network
por: Zhao, Yun, et al.
Publicado: (2022) -
Multicomponent Spatial-Temporal Graph Attention Convolution Networks for Traffic Prediction with Spatially Sparse Data
por: Liu, Shaohua, et al.
Publicado: (2021) -
Hourly forecasting of traffic flow rates using spatial temporal graph neural networks
por: Belt, Eline A., et al.
Publicado: (2023)