Cargando…
The Entropy Density Behavior across a Plane Shock Wave
Entropy density behavior poses many problems when we study non-equilibrium situations. In particular, the local equilibrium hypothesis (LEH) has played a very important role and is taken for granted in non-equilibrium problems, no matter how extreme they are. In this paper we would like to calculate...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297436/ https://www.ncbi.nlm.nih.gov/pubmed/37372250 http://dx.doi.org/10.3390/e25060906 |
Sumario: | Entropy density behavior poses many problems when we study non-equilibrium situations. In particular, the local equilibrium hypothesis (LEH) has played a very important role and is taken for granted in non-equilibrium problems, no matter how extreme they are. In this paper we would like to calculate the Boltzmann entropy balance equation for a plane shock wave and show its performance for Grad’s 13-moment approximation and the Navier–Stokes–Fourier equations. In fact, we calculate the correction for the LEH in Grad’s case and discuss its properties. |
---|