Cargando…

Circadian Disruption Primes Myofibroblasts for Accelerated Activation as a Mechanism Underpinning Fibrotic Progression in Non-Alcoholic Fatty Liver Disease

Circadian rhythm governs many aspects of liver physiology and its disruption exacerbates chronic disease. CLOCKΔ19 mice disrupted circadian rhythm and spontaneously developed obesity and metabolic syndrome, a phenotype that parallels the progression of non-alcoholic fatty liver disease (NAFLD). NAFL...

Descripción completa

Detalles Bibliográficos
Autores principales: Jokl, Elliot, Llewellyn, Jessica, Simpson, Kara, Adegboye, Oluwatobi, Pritchett, James, Zeef, Leo, Donaldson, Ian, Athwal, Varinder S., Purssell, Huw, Street, Oliver, Bennett, Lucy, Guha, Indra Neil, Hanley, Neil A., Meng, Qing-Jun, Piper Hanley, Karen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297459/
https://www.ncbi.nlm.nih.gov/pubmed/37371052
http://dx.doi.org/10.3390/cells12121582
Descripción
Sumario:Circadian rhythm governs many aspects of liver physiology and its disruption exacerbates chronic disease. CLOCKΔ19 mice disrupted circadian rhythm and spontaneously developed obesity and metabolic syndrome, a phenotype that parallels the progression of non-alcoholic fatty liver disease (NAFLD). NAFLD represents an increasing health burden with an estimated incidence of around 25% and is associated with an increased risk of progression towards inflammation, fibrosis and carcinomas. Excessive extracellular matrix deposition (fibrosis) is the key driver of chronic disease progression. However, little attention was paid to the impact of disrupted circadian rhythm in hepatic stellate cells (HSCs) which are the primary mediator of fibrotic ECM deposition. Here, we showed in vitro and in vivo that liver fibrosis is significantly increased when circadian rhythm is disrupted by CLOCK mutation. Quiescent HSCs from CLOCKΔ19 mice showed higher expression of RhoGDI pathway components and accelerated activation. Genes altered in this primed CLOCKΔ19 qHSC state may provide biomarkers for early liver disease detection, and include AOC3, which correlated with disease severity in patient serum samples. Integration of CLOCKΔ19 microarray data with ATAC-seq data from WT qHSCs suggested a potential CLOCK regulome promoting a quiescent state and downregulating genes involved in cell projection assembly. CLOCKΔ19 mice showed higher baseline COL1 deposition and significantly worse fibrotic injury after CCl(4) treatment. Our data demonstrate that disruption to circadian rhythm primes HSCs towards an accelerated fibrotic response which worsens liver disease.