Cargando…
A Special Relativistic Exploitation of the Second Law of Thermodynamics and Its Non-Relativistic Limit
A thermodynamic process is a solution of the balance equations fulfilling the second law of thermodynamics. This implies restrictions on the constitutive relations. The most general way to exploit these restrictions is the method introduced by Liu. This method is applied here, in contrast to most of...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297461/ https://www.ncbi.nlm.nih.gov/pubmed/37372296 http://dx.doi.org/10.3390/e25060952 |
Sumario: | A thermodynamic process is a solution of the balance equations fulfilling the second law of thermodynamics. This implies restrictions on the constitutive relations. The most general way to exploit these restrictions is the method introduced by Liu. This method is applied here, in contrast to most of the literature on relativistic thermodynamic constitutive theory, which goes back to a relativistic extension of the Thermodynamics of Irreversible Processes. In the present work, the balance equations and the entropy inequality are formulated in the special relativistic four-dimensional form for an observer with four-velocity parallel to the particle current. The restrictions on constitutive functions are exploited in the relativistic formulation. The domain of the constitutive functions, the state space, is chosen to include the particle number density, the internal energy density, the space derivatives of these quantities, and the space derivative of the material velocity for a chosen observer. The resulting restrictions on constitutive functions, as well as the resulting entropy production are investigated in the non-relativistic limit, and relativistic correction terms of the lowest order are derived. The restrictions on constitutive functions and the entropy production in the low energy limit are compared to the results of an exploitation of the non-relativistic balance equations and entropy inequality. In the next order of approximation our results are compared to the Thermodynamics of Irreversible Processes. |
---|