Cargando…
Laplacian Spectra of Persistent Structures in Taiwan, Singapore, and US Stock Markets
An important challenge in the study of complex systems is to identify appropriate effective variables at different times. In this paper, we explain why structures that are persistent with respect to changes in length and time scales are proper effective variables, and illustrate how persistent struc...
Autores principales: | Yen, Peter Tsung-Wen, Xia, Kelin, Cheong, Siew Ann |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297551/ https://www.ncbi.nlm.nih.gov/pubmed/37372190 http://dx.doi.org/10.3390/e25060846 |
Ejemplares similares
-
Understanding Changes in the Topology and Geometry of Financial Market Correlations during a Market Crash
por: Yen, Peter Tsung-Wen, et al.
Publicado: (2021) -
Bubbles Are Departures from Equilibrium Housing Markets: Evidence from Singapore and Taiwan
por: Tay, Darrell Jiajie, et al.
Publicado: (2016) -
Integration of persistent Laplacian and pre-trained transformer for protein solubility changes upon mutation
por: Wee, JunJie, et al.
Publicado: (2023) -
Stock or stroke? Stock market movement and stroke incidence in Taiwan
por: Chen, Chun-Chih, et al.
Publicado: (2012) -
Laplacian spectra of a class of small-world networks and their applications
por: Liu, Hongxiao, et al.
Publicado: (2015)