Cargando…
A Variation of the Algorithm to Achieve the Maximum Entropy for Belief Functions
Evidence theory (TE), based on imprecise probabilities, is often more appropriate than the classical theory of probability (PT) to apply in situations with inaccurate or incomplete information. The quantification of the information that a piece of evidence involves is a key issue in TE. Shannon’s en...
Autores principales: | Abellán, Joaquín, Pérez-Lara, Alejandro, Moral-García, Serafín |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297582/ https://www.ncbi.nlm.nih.gov/pubmed/37372211 http://dx.doi.org/10.3390/e25060867 |
Ejemplares similares
-
Upgrading the Fusion of Imprecise Classifiers
por: Moral-García, Serafín, et al.
Publicado: (2023) -
The Thermodynamics of Network Coding, and an Algorithmic Refinement of the Principle of Maximum Entropy †
por: Zenil, Hector, et al.
Publicado: (2019) -
Remarks on the Maximum Entropy Principle with Application to the Maximum Entropy Theory of Ecology
por: Favretti, Marco
Publicado: (2017) -
A Maximum Entropy Model of Bounded Rational Decision-Making with Prior Beliefs and Market Feedback
por: Evans, Benjamin Patrick, et al.
Publicado: (2021) -
The maximum entropy method
por: Wu, Nailong
Publicado: (1997)