Cargando…
Monitoring of Chlorpyrifos Residues in Corn Oil Based on Raman Spectral Deep-Learning Model
This study presents a novel method for the quantitative detection of residual chlorpyrifos in corn oil through Raman spectroscopy using a combined long short-term memory network (LSTM) and convolutional neural network (CNN) architecture. The QE Pro Raman+ spectrometer was employed to collect Raman s...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297676/ https://www.ncbi.nlm.nih.gov/pubmed/37372614 http://dx.doi.org/10.3390/foods12122402 |
Sumario: | This study presents a novel method for the quantitative detection of residual chlorpyrifos in corn oil through Raman spectroscopy using a combined long short-term memory network (LSTM) and convolutional neural network (CNN) architecture. The QE Pro Raman+ spectrometer was employed to collect Raman spectra of corn oil samples with varying concentrations of chlorpyrifos residues. A deep-learning model based on LSTM combined with a CNN structure was designed to realize feature self-learning and model training of Raman spectra of corn oil samples. In the study, it was discovered that the LSTM-CNN model has superior generalization performance compared to both the LSTM and CNN models. The root-mean-square error of prediction (RMSEP) of the LSTM-CNN model is 12.3 mg·kg(−1), the coefficient of determination ([Formula: see text]) is 0.90, and the calculation of the relative prediction deviation (RPD) results in a value of 3.2. The study demonstrates that the deep-learning network based on an LSTM-CNN structure can achieve feature self-learning and multivariate model calibration for Raman spectra without preprocessing. The results of this study present an innovative approach for chemometric analysis using Raman spectroscopy. |
---|