Cargando…
Monitoring of Chlorpyrifos Residues in Corn Oil Based on Raman Spectral Deep-Learning Model
This study presents a novel method for the quantitative detection of residual chlorpyrifos in corn oil through Raman spectroscopy using a combined long short-term memory network (LSTM) and convolutional neural network (CNN) architecture. The QE Pro Raman+ spectrometer was employed to collect Raman s...
Autores principales: | Xue, Yingchao, Jiang, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297676/ https://www.ncbi.nlm.nih.gov/pubmed/37372614 http://dx.doi.org/10.3390/foods12122402 |
Ejemplares similares
-
Rapid detection of residual chlorpyrifos and pyrimethanil on fruit surface by surface-enhanced Raman spectroscopy integrated with deep learning approach
por: Chen, Zhu, et al.
Publicado: (2023) -
Oil content analysis of corn seeds using a hand-held Raman spectrometer and spectral peak decomposition algorithm
por: Jin, Yuan, et al.
Publicado: (2023) -
Deep learning on reflectance confocal microscopy improves Raman spectral diagnosis of basal cell carcinoma
por: Chen, Mengkun, et al.
Publicado: (2022) -
Canopy Nitrogen Concentration Monitoring Techniques of Summer Corn Based on Canopy Spectral Information
por: Liu, Lu, et al.
Publicado: (2019) -
Heart sound classification based on improved mel-frequency spectral coefficients and deep residual learning
por: Li, Feng, et al.
Publicado: (2022)