Cargando…

Rheological Characteristics of Soluble Cress Seed Mucilage and β-Lactoglobulin Complexes with Salts Addition: Rheological Evidence of Structural Rearrangement

Functional, physicochemical, and rheological properties of protein–polysaccharide complexes are remarkably under the influence of the quality of solvent or cosolute in a food system. Here, a comprehensive description of the rheological properties and microstructural peculiarities of cress seed mucil...

Descripción completa

Detalles Bibliográficos
Autores principales: Taheri, Afsaneh, Kashaninejad, Mahdi, Tamaddon, Ali Mohammad, Du, Juan, Jafari, Seid Mahdi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297677/
https://www.ncbi.nlm.nih.gov/pubmed/37367155
http://dx.doi.org/10.3390/gels9060485
_version_ 1785063938750152704
author Taheri, Afsaneh
Kashaninejad, Mahdi
Tamaddon, Ali Mohammad
Du, Juan
Jafari, Seid Mahdi
author_facet Taheri, Afsaneh
Kashaninejad, Mahdi
Tamaddon, Ali Mohammad
Du, Juan
Jafari, Seid Mahdi
author_sort Taheri, Afsaneh
collection PubMed
description Functional, physicochemical, and rheological properties of protein–polysaccharide complexes are remarkably under the influence of the quality of solvent or cosolute in a food system. Here, a comprehensive description of the rheological properties and microstructural peculiarities of cress seed mucilage (CSM)-β-lactoglobulin (Blg) complexes are discussed in the presence of CaCl(2) (2–10 mM), (CSM–Blg–Ca), and NaCl (10–100 mM) (CSM–Blg–Na). Our results on steady-flow and oscillatory measurements indicated that shear thinning properties can be fitted well by the Herschel–Bulkley model and by the formation of highly interconnected gel structures in the complexes, respectively. Analyzing the rheological and structural features simultaneously led to an understanding that formations of extra junctions and the rearrangement of the particles in the CSM–Blg–Ca could enhance elasticity and viscosity, as compared with the effect of CSM–Blg complex without salts. NaCl reduced the viscosity and dynamic rheological properties and intrinsic viscosity through the salt screening effect and dissociation of structure. Moreover, the compatibility and homogeneity of complexes were approved by dynamic rheometry based on the Cole–Cole plot supported by intrinsic viscosity and molecular parameters such as stiffness. The results outlined the importance of rheological properties as criteria for investigations that determine the strength of interaction while facilitating the fabrication of new structures in salt-containing foods that incorporate protein–polysaccharide complexes.
format Online
Article
Text
id pubmed-10297677
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-102976772023-06-28 Rheological Characteristics of Soluble Cress Seed Mucilage and β-Lactoglobulin Complexes with Salts Addition: Rheological Evidence of Structural Rearrangement Taheri, Afsaneh Kashaninejad, Mahdi Tamaddon, Ali Mohammad Du, Juan Jafari, Seid Mahdi Gels Article Functional, physicochemical, and rheological properties of protein–polysaccharide complexes are remarkably under the influence of the quality of solvent or cosolute in a food system. Here, a comprehensive description of the rheological properties and microstructural peculiarities of cress seed mucilage (CSM)-β-lactoglobulin (Blg) complexes are discussed in the presence of CaCl(2) (2–10 mM), (CSM–Blg–Ca), and NaCl (10–100 mM) (CSM–Blg–Na). Our results on steady-flow and oscillatory measurements indicated that shear thinning properties can be fitted well by the Herschel–Bulkley model and by the formation of highly interconnected gel structures in the complexes, respectively. Analyzing the rheological and structural features simultaneously led to an understanding that formations of extra junctions and the rearrangement of the particles in the CSM–Blg–Ca could enhance elasticity and viscosity, as compared with the effect of CSM–Blg complex without salts. NaCl reduced the viscosity and dynamic rheological properties and intrinsic viscosity through the salt screening effect and dissociation of structure. Moreover, the compatibility and homogeneity of complexes were approved by dynamic rheometry based on the Cole–Cole plot supported by intrinsic viscosity and molecular parameters such as stiffness. The results outlined the importance of rheological properties as criteria for investigations that determine the strength of interaction while facilitating the fabrication of new structures in salt-containing foods that incorporate protein–polysaccharide complexes. MDPI 2023-06-13 /pmc/articles/PMC10297677/ /pubmed/37367155 http://dx.doi.org/10.3390/gels9060485 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Taheri, Afsaneh
Kashaninejad, Mahdi
Tamaddon, Ali Mohammad
Du, Juan
Jafari, Seid Mahdi
Rheological Characteristics of Soluble Cress Seed Mucilage and β-Lactoglobulin Complexes with Salts Addition: Rheological Evidence of Structural Rearrangement
title Rheological Characteristics of Soluble Cress Seed Mucilage and β-Lactoglobulin Complexes with Salts Addition: Rheological Evidence of Structural Rearrangement
title_full Rheological Characteristics of Soluble Cress Seed Mucilage and β-Lactoglobulin Complexes with Salts Addition: Rheological Evidence of Structural Rearrangement
title_fullStr Rheological Characteristics of Soluble Cress Seed Mucilage and β-Lactoglobulin Complexes with Salts Addition: Rheological Evidence of Structural Rearrangement
title_full_unstemmed Rheological Characteristics of Soluble Cress Seed Mucilage and β-Lactoglobulin Complexes with Salts Addition: Rheological Evidence of Structural Rearrangement
title_short Rheological Characteristics of Soluble Cress Seed Mucilage and β-Lactoglobulin Complexes with Salts Addition: Rheological Evidence of Structural Rearrangement
title_sort rheological characteristics of soluble cress seed mucilage and β-lactoglobulin complexes with salts addition: rheological evidence of structural rearrangement
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10297677/
https://www.ncbi.nlm.nih.gov/pubmed/37367155
http://dx.doi.org/10.3390/gels9060485
work_keys_str_mv AT taheriafsaneh rheologicalcharacteristicsofsolublecressseedmucilageandblactoglobulincomplexeswithsaltsadditionrheologicalevidenceofstructuralrearrangement
AT kashaninejadmahdi rheologicalcharacteristicsofsolublecressseedmucilageandblactoglobulincomplexeswithsaltsadditionrheologicalevidenceofstructuralrearrangement
AT tamaddonalimohammad rheologicalcharacteristicsofsolublecressseedmucilageandblactoglobulincomplexeswithsaltsadditionrheologicalevidenceofstructuralrearrangement
AT dujuan rheologicalcharacteristicsofsolublecressseedmucilageandblactoglobulincomplexeswithsaltsadditionrheologicalevidenceofstructuralrearrangement
AT jafariseidmahdi rheologicalcharacteristicsofsolublecressseedmucilageandblactoglobulincomplexeswithsaltsadditionrheologicalevidenceofstructuralrearrangement