Cargando…
Optimisation of β-Glucosidase Production in a Crude Aspergillus japonicus VIT-SB1 Cellulase Cocktail Using One Variable at a Time and Statistical Methods and its Application in Cellulose Hydrolysis
Pulp and paper mill sludge (PPMS) is currently disposed of into landfills which are reaching their maximum capacity. Valorisation of PPMS by enzymatic hydrolysis using cellulases is an alternative strategy. Existing commercial cellulases are expensive and contain low titres of β-glucosidases. In thi...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298073/ https://www.ncbi.nlm.nih.gov/pubmed/37373076 http://dx.doi.org/10.3390/ijms24129928 |
_version_ | 1785064025406570496 |
---|---|
author | Singh, Nivisti Sithole, Bishop Bruce Govinden, Roshini |
author_facet | Singh, Nivisti Sithole, Bishop Bruce Govinden, Roshini |
author_sort | Singh, Nivisti |
collection | PubMed |
description | Pulp and paper mill sludge (PPMS) is currently disposed of into landfills which are reaching their maximum capacity. Valorisation of PPMS by enzymatic hydrolysis using cellulases is an alternative strategy. Existing commercial cellulases are expensive and contain low titres of β-glucosidases. In this study, β-glucosidase production was optimised by Aspergillus japonicus VIT-SB1 to obtain higher β-glucosidase titres using the One Variable at a Time (OVAT), Plackett Burman (PBD), and Box Behnken design (BBD)of experiments and the efficiency of the optimised cellulase cocktail to hydrolyse cellulose was tested. β-Glucosidase production was enhanced from 0.4 to 10.13 U/mL, representing a 25.3-fold increase in production levels after optimisation. The optimal BBD production conditions were 6 days of fermentation at 20 °C, 125 rpm, 1.75% soy peptone, and 1.25% wheat bran in (pH 6.0) buffer. The optimal pH for β-glucosidase activity in the crude cellulase cocktail was (pH 5.0) at 50 °C. Optimal cellulose hydrolysis using the crude cellulase cocktail occurred at longer incubation times, and higher substrate loads and enzyme doses. Cellulose hydrolysis with the A. japonicus VIT-SB1 cellulase cocktail and commercial cellulase cocktails resulted in glucose yields of 15.12 and 12.33 µmol/mL glucose, respectively. Supplementation of the commercial cellulase cocktail with 0.25 U/mg of β-glucosidase resulted in a 19.8% increase in glucose yield. |
format | Online Article Text |
id | pubmed-10298073 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-102980732023-06-28 Optimisation of β-Glucosidase Production in a Crude Aspergillus japonicus VIT-SB1 Cellulase Cocktail Using One Variable at a Time and Statistical Methods and its Application in Cellulose Hydrolysis Singh, Nivisti Sithole, Bishop Bruce Govinden, Roshini Int J Mol Sci Article Pulp and paper mill sludge (PPMS) is currently disposed of into landfills which are reaching their maximum capacity. Valorisation of PPMS by enzymatic hydrolysis using cellulases is an alternative strategy. Existing commercial cellulases are expensive and contain low titres of β-glucosidases. In this study, β-glucosidase production was optimised by Aspergillus japonicus VIT-SB1 to obtain higher β-glucosidase titres using the One Variable at a Time (OVAT), Plackett Burman (PBD), and Box Behnken design (BBD)of experiments and the efficiency of the optimised cellulase cocktail to hydrolyse cellulose was tested. β-Glucosidase production was enhanced from 0.4 to 10.13 U/mL, representing a 25.3-fold increase in production levels after optimisation. The optimal BBD production conditions were 6 days of fermentation at 20 °C, 125 rpm, 1.75% soy peptone, and 1.25% wheat bran in (pH 6.0) buffer. The optimal pH for β-glucosidase activity in the crude cellulase cocktail was (pH 5.0) at 50 °C. Optimal cellulose hydrolysis using the crude cellulase cocktail occurred at longer incubation times, and higher substrate loads and enzyme doses. Cellulose hydrolysis with the A. japonicus VIT-SB1 cellulase cocktail and commercial cellulase cocktails resulted in glucose yields of 15.12 and 12.33 µmol/mL glucose, respectively. Supplementation of the commercial cellulase cocktail with 0.25 U/mg of β-glucosidase resulted in a 19.8% increase in glucose yield. MDPI 2023-06-09 /pmc/articles/PMC10298073/ /pubmed/37373076 http://dx.doi.org/10.3390/ijms24129928 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Singh, Nivisti Sithole, Bishop Bruce Govinden, Roshini Optimisation of β-Glucosidase Production in a Crude Aspergillus japonicus VIT-SB1 Cellulase Cocktail Using One Variable at a Time and Statistical Methods and its Application in Cellulose Hydrolysis |
title | Optimisation of β-Glucosidase Production in a Crude Aspergillus japonicus VIT-SB1 Cellulase Cocktail Using One Variable at a Time and Statistical Methods and its Application in Cellulose Hydrolysis |
title_full | Optimisation of β-Glucosidase Production in a Crude Aspergillus japonicus VIT-SB1 Cellulase Cocktail Using One Variable at a Time and Statistical Methods and its Application in Cellulose Hydrolysis |
title_fullStr | Optimisation of β-Glucosidase Production in a Crude Aspergillus japonicus VIT-SB1 Cellulase Cocktail Using One Variable at a Time and Statistical Methods and its Application in Cellulose Hydrolysis |
title_full_unstemmed | Optimisation of β-Glucosidase Production in a Crude Aspergillus japonicus VIT-SB1 Cellulase Cocktail Using One Variable at a Time and Statistical Methods and its Application in Cellulose Hydrolysis |
title_short | Optimisation of β-Glucosidase Production in a Crude Aspergillus japonicus VIT-SB1 Cellulase Cocktail Using One Variable at a Time and Statistical Methods and its Application in Cellulose Hydrolysis |
title_sort | optimisation of β-glucosidase production in a crude aspergillus japonicus vit-sb1 cellulase cocktail using one variable at a time and statistical methods and its application in cellulose hydrolysis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298073/ https://www.ncbi.nlm.nih.gov/pubmed/37373076 http://dx.doi.org/10.3390/ijms24129928 |
work_keys_str_mv | AT singhnivisti optimisationofbglucosidaseproductioninacrudeaspergillusjaponicusvitsb1cellulasecocktailusingonevariableatatimeandstatisticalmethodsanditsapplicationincellulosehydrolysis AT sitholebishopbruce optimisationofbglucosidaseproductioninacrudeaspergillusjaponicusvitsb1cellulasecocktailusingonevariableatatimeandstatisticalmethodsanditsapplicationincellulosehydrolysis AT govindenroshini optimisationofbglucosidaseproductioninacrudeaspergillusjaponicusvitsb1cellulasecocktailusingonevariableatatimeandstatisticalmethodsanditsapplicationincellulosehydrolysis |