Cargando…

Targeting the Granulocytic Defense against A. fumigatus in Healthy Volunteers and Septic Patients

Neutrophil granulocytes (NGs) are among the key players in the defense against Aspergillus fumigatus (A. fumigatus). To better elucidate a pathophysiological understanding of their role and functions, we applied a human cell model using NGs from healthy participants and septic patients to evaluate t...

Descripción completa

Detalles Bibliográficos
Autores principales: Michel, Stefanie, Kirchhoff, Lisa, Rath, Peter-Michael, Schwab, Jansje, Schmidt, Karsten, Brenner, Thorsten, Dubler, Simon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298267/
https://www.ncbi.nlm.nih.gov/pubmed/37373061
http://dx.doi.org/10.3390/ijms24129911
Descripción
Sumario:Neutrophil granulocytes (NGs) are among the key players in the defense against Aspergillus fumigatus (A. fumigatus). To better elucidate a pathophysiological understanding of their role and functions, we applied a human cell model using NGs from healthy participants and septic patients to evaluate their inhibitory effects on the growth of A. fumigatus ex vivo. Conidia of A. fumigatus (ATCC(®) 204305) were co-incubated with NGs from healthy volunteers or septic patients for 16 h. A. fumigatus growth was measured by XTT assays with a plate reader. The inhibitory effect of NGs on 18 healthy volunteers revealed great heterogeneity. Additionally, growth inhibition was significantly stronger in the afternoon than the morning, due to potentially different cortisol levels. It is particularly interesting that the inhibitory effect of NGs was reduced in patients with sepsis compared to healthy controls. In addition, the magnitude of the NG-driven defense against A. fumigatus was highly variable among healthy volunteers. Moreover, daytime and corresponding cortisol levels also seem to have a strong influence. Most interestingly, preliminary experiments with NGs from septic patients point to a strongly diminished granulocytic defense against Aspergillus spp.