Cargando…
New 3-Aminopropylsilatrane Derivatives: Synthesis, Structure, Properties, and Biological Activity
The biologically active compound 3-aminopropylsilatrane (a compound with a pentacoordinated silicon atom) underwent an aza-Michael reaction with various acrylates and other Michael acceptors. Depending on the molar ratio, the reaction yielded Michael mono- or diadducts (11 examples) containing funct...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10298438/ https://www.ncbi.nlm.nih.gov/pubmed/37373114 http://dx.doi.org/10.3390/ijms24129965 |
Sumario: | The biologically active compound 3-aminopropylsilatrane (a compound with a pentacoordinated silicon atom) underwent an aza-Michael reaction with various acrylates and other Michael acceptors. Depending on the molar ratio, the reaction yielded Michael mono- or diadducts (11 examples) containing functional groups (silatranyl, carbonyl, nitrile, amino, etc.). These compounds were characterized via IR and NMR spectroscopy, mass spectrometry, X-ray diffraction, and elemental analysis. Calculations (using in silico, PASS, and SwissADMET online software) revealed that the functionalized (hybrid) silatranes were bioavailable, druglike compounds that exhibited pronounced antineoplastic and macrophage-colony-stimulating activity. The in vitro effect of silatranes on the growth of pathogenic bacteria (Listeria, Staphylococcus, and Yersinia) was studied. It was found that the synthesized compounds exerted inhibitory and stimulating effects in high and low concentrations, respectively. |
---|