Cargando…
Quantification of Microvascular Lesions in the Central Retinal Field: Could It Predict the Severity of Diabetic Retinopathy?
Diabetic retinopathy (DR) is a neurodegenerative disease characterized by the presence of microcirculatory lesions. Among them, microaneurysms (MAs) are the first observable hallmark of early ophthalmological changes. The present work aims to study whether the quantification of MAs, hemorrhages (Hma...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299148/ https://www.ncbi.nlm.nih.gov/pubmed/37373641 http://dx.doi.org/10.3390/jcm12123948 |
Sumario: | Diabetic retinopathy (DR) is a neurodegenerative disease characterized by the presence of microcirculatory lesions. Among them, microaneurysms (MAs) are the first observable hallmark of early ophthalmological changes. The present work aims to study whether the quantification of MAs, hemorrhages (Hmas) and hard exudates (HEs) in the central retinal field could have a predictive value on DR severity. These retinal lesions were quantified in a single field NM-1 of 160 retinographies of diabetic patients from the IOBA’s reading center. Samples included different disease severity levels and excluded proliferating forms: no DR (n = 30), mild non-proliferative (n = 30), moderate (n = 50) and severe (n = 50). Quantification of MAs, Hmas, and HEs revealed an increasing trend as DR severity progresses. Differences between severity levels were statistically significant, suggesting that the analysis of the central field provides valuable information on severity level and could be used as a clinical tool to assess DR grading in the eyecare routine. Even though further validation is needed, counting microvascular lesions in a single retinal field can be proposed as a rapid screening system to classify DR patients with different stages of severity according to the international classification. |
---|