Cargando…
Uncovering Predictors of Lipid Goal Attainment in Type 2 Diabetes Outpatients Using Logic Learning Machine: Insights from the AMD Annals and AMD Artificial Intelligence Study Group
Identifying and treating lipid abnormalities is crucial for preventing cardiovascular disease in diabetic patients, yet only two-thirds of patients reach recommended cholesterol levels. Elucidating the factors associated with lipid goal attainment represents an unmet clinical need. To address this k...
Autores principales: | Masi, Davide, Zilich, Rita, Candido, Riccardo, Giancaterini, Annalisa, Guaita, Giacomo, Muselli, Marco, Ponzani, Paola, Santin, Pierluigi, Verda, Damiano, Musacchio, Nicoletta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299248/ https://www.ncbi.nlm.nih.gov/pubmed/37373787 http://dx.doi.org/10.3390/jcm12124095 |
Ejemplares similares
-
Transparent machine learning suggests a key driver in the decision to start insulin therapy in individuals with type 2 diabetes
por: Musacchio, Nicoletta, et al.
Publicado: (2023) -
Artificial Intelligence and Big Data in Diabetes Care: A Position Statement of the Italian Association of Medical Diabetologists
por: Musacchio, Nicoletta, et al.
Publicado: (2020) -
The Burden of Obesity in Type 1 Diabetic Subjects: A Sex-specific Analysis From the AMD Annals Initiative
por: Giandalia, Annalisa, et al.
Publicado: (2023) -
Gender-Disparities in Adults with Type 1 Diabetes: More Than a Quality of Care Issue. A Cross-Sectional Observational Study from the AMD Annals Initiative
por: Manicardi, Valeria, et al.
Publicado: (2016) -
Determinants of good metabolic control without weight gain in type 2 diabetes management: a machine learning analysis
por: Giorda, Carlo Bruno, et al.
Publicado: (2020)