Cargando…

Biomimetic Liquid Crystal-Modified Mesoporous Silica−Based Composite Hydrogel for Soft Tissue Repair

The reconstruction of blood vessels plays a critical role in the tissue regeneration process. However, existing wound dressings in tissue engineering face challenges due to inadequate revascularization induction and a lack of vascular structure. In this study, we report the modification of mesoporou...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Xiaoling, Wan, Lei, Zhu, Taifu, Li, Ruiqi, Zhang, Mu, Lu, Haibin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299385/
https://www.ncbi.nlm.nih.gov/pubmed/37367280
http://dx.doi.org/10.3390/jfb14060316
Descripción
Sumario:The reconstruction of blood vessels plays a critical role in the tissue regeneration process. However, existing wound dressings in tissue engineering face challenges due to inadequate revascularization induction and a lack of vascular structure. In this study, we report the modification of mesoporous silica nanospheres (MSNs) with liquid crystal (LC) to enhance bioactivity and biocompatibility in vitro. This LC modification facilitated crucial cellular processes such as the proliferation, migration, spreading, and expression of angiogenesis−related genes and proteins in human umbilical vein endothelial cells (HUVECs). Furthermore, we incorporated LC−modified MSN within a hydrogel matrix to create a multifunctional dressing that combines the biological benefits of LC−MSN with the mechanical advantages of a hydrogel. Upon application to full−thickness wounds, these composite hydrogels exhibited accelerated healing, evidenced by enhanced granulation tissue formation, increased collagen deposition, and improved vascular development. Our findings suggest that the LC−MSN hydrogel formulation holds significant promise for the repair and regeneration of soft tissues.