Cargando…
BayesESS: A tool for quantifying the impact of parametric priors in Bayesian analysis
Bayesian inference has become an attractive choice for scientists seeking to incorporate prior knowledge into their modeling framework. While the R community has been an important contributor in facilitating Bayesian statistical analyses, software to evaluate the impact of prior knowledge to such mo...
Autores principales: | Song, Jaejoon, Morita, Satoshi, Kuo, Ying-Wei, Lee, J. Jack |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299797/ https://www.ncbi.nlm.nih.gov/pubmed/37377886 http://dx.doi.org/10.1016/j.softx.2023.101358 |
Ejemplares similares
-
Assessing the Impact of Precision Parameter Prior in Bayesian Non-parametric Growth Curve Modeling
por: Tong, Xin, et al.
Publicado: (2021) -
Bayesian Prior Choice in IRT Estimation Using MCMC and Variational Bayes
por: Natesan, Prathiba, et al.
Publicado: (2016) -
BayFlux: A Bayesian method to quantify metabolic Fluxes and their uncertainty at the genome scale
por: Backman, Tyler W. H., et al.
Publicado: (2023) -
Prius est esse quam taliter esse : la disputa por el descanso dominical en Yucatán /
por: Borges Caamal, Víctor
Publicado: (2020) -
Bayesian treatment comparison using parametric mixture priors
computed from elicited histograms
por: Thall, Peter F, et al.
Publicado: (2017)