Cargando…

Graph Spatio-Temporal Networks for Manufacturing Sales Forecast and Prevention Policies in Pandemic Era

Worldwide manufacturing industries are significantly affected by COVID-19 pandemic because of their production characteristics with low-cost country sourcing, globalization, and inventory level. To analyze the correlated time series, spatial-temporal model becomes more attractive, and the graph conv...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Chia-Yen, Yang, Shu-Huei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier Ltd. 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299845/
http://dx.doi.org/10.1016/j.cie.2023.109413
Descripción
Sumario:Worldwide manufacturing industries are significantly affected by COVID-19 pandemic because of their production characteristics with low-cost country sourcing, globalization, and inventory level. To analyze the correlated time series, spatial-temporal model becomes more attractive, and the graph convolution network (GCN) is also commonly used to provide more information to the nodes and its neighbors in the graph. Recently, attention-adjusted graph spatio-temporal network (AGSTN) was proposed to address the problem of pre-defined graph in GCN by combining multi-graph convolution and attention adjustment to learn spatial and temporal correlations over time. However, AGSTN may show potential problem with limited small non-sensor data; particularly, convergence issue. This study proposes several variants of AGSTN and applies them to non-sensor data. We suggest data augmentation and regularization techniques such as edge selection, time series decomposition, prevention policies to improve AGSTN. An empirical study of worldwide manufacturing industries in pandemic era was conducted to validate the proposed variants. The results show that the proposed variants significantly improve the prediction performance at least around 20% on mean squared error (MSE) and convergence problem.