Cargando…
Graph Spatio-Temporal Networks for Manufacturing Sales Forecast and Prevention Policies in Pandemic Era
Worldwide manufacturing industries are significantly affected by COVID-19 pandemic because of their production characteristics with low-cost country sourcing, globalization, and inventory level. To analyze the correlated time series, spatial-temporal model becomes more attractive, and the graph conv...
Autores principales: | Lee, Chia-Yen, Yang, Shu-Huei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Published by Elsevier Ltd.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299845/ http://dx.doi.org/10.1016/j.cie.2023.109413 |
Ejemplares similares
-
Day-Ahead Hourly Solar Irradiance Forecasting Based on Multi-Attributed Spatio-Temporal Graph Convolutional Network
por: Jeon, Hyeon-Ju, et al.
Publicado: (2022) -
ADSTGCN: A Dynamic Adaptive Deeper Spatio-Temporal Graph Convolutional Network for Multi-Step Traffic Forecasting
por: Cui, Zhengyan, et al.
Publicado: (2023) -
Spatio-temporal graph data analytics
por: Gunturi, Venkata M V, et al.
Publicado: (2017) -
A Graph Neural Network with Spatio-Temporal Attention for Multi-Sources Time Series Data: An Application to Frost Forecast †
por: Lira, Hernan, et al.
Publicado: (2022) -
Global Spatio-temporal Patterns of Influenza in the Post-pandemic Era
por: He, Daihai, et al.
Publicado: (2015)