Cargando…
Development and External Validation of Machine Learning-Based Models for Predicting Lung Metastasis in Kidney Cancer: A Large Population-Based Study
The accuracy of indices widely used to evaluate lung metastasis (LM) in patients with kidney cancer (KC) is insufficient. Therefore, we aimed at developing a model to estimate the risk of developing LM in KC based on a large population size and machine learning algorithms. Demographic and clinicopat...
Autores principales: | Yi, Xinglin, Zhang, Yuhan, Cai, Juan, Hu, Yu, Wen, Kai, Xie, Pan, Yin, Na, Zhou, Xiangdong, Luo, Hu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299882/ https://www.ncbi.nlm.nih.gov/pubmed/37383704 http://dx.doi.org/10.1155/2023/8001899 |
Ejemplares similares
-
Using machine learning to predict lymph node metastasis in patients with renal cell carcinoma: A population-based study
por: Zhang, Yuhan, et al.
Publicado: (2023) -
Individual risk and prognostic value prediction by machine learning for distant metastasis in pulmonary sarcomatoid carcinoma: a large cohort study based on the SEER database and the Chinese population
por: Yi, Xinglin, et al.
Publicado: (2023) -
An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning
por: Li, Wenle, et al.
Publicado: (2022) -
Assessing the external validity of machine learning-based detection of glaucoma
por: Li, Chi, et al.
Publicado: (2023) -
Prognostic nomogram based on the lymph node metastasis indicators for patients with bladder cancer: A SEER population‐based study and external validation
por: Li, Shuai, et al.
Publicado: (2022)