Cargando…

Integrating GWAS and proteome data to identify novel drug targets for MU

Mouth ulcers have been associated with numerous loci in genome wide association studies (GWAS). Nonetheless, it remains unclear what mechanisms are involved in the pathogenesis of mouth ulcers at these loci, as well as what the most effective ulcer drugs are. Thus, we aimed to screen hub genes respo...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Yadong, Song, Jukun, Liu, Manyi, Ma, Hong, Zhang, Junmei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10299993/
https://www.ncbi.nlm.nih.gov/pubmed/37369724
http://dx.doi.org/10.1038/s41598-023-37177-y
Descripción
Sumario:Mouth ulcers have been associated with numerous loci in genome wide association studies (GWAS). Nonetheless, it remains unclear what mechanisms are involved in the pathogenesis of mouth ulcers at these loci, as well as what the most effective ulcer drugs are. Thus, we aimed to screen hub genes responsible for mouth ulcer pathogenesis. We conducted an imputed/in-silico proteome-wide association study to discover candidate genes that impact the development of mouth ulcers and affect the expression and concentration of associated proteins in the bloodstream. The integrative analysis revealed that 35 genes play a significant role in the development of mouth ulcers, both in terms of their protein and transcriptional levels. Following this analysis, the researchers identified 6 key genes, namely BTN3A3, IL12B, BPI, FAM213A, PLXNB2, and IL22RA2, which were related to the onset of mouth ulcers. By combining with multidimensional data, six genes were found to correlate with mouth ulcer pathogenesis, which can be useful for further biological and therapeutic research.