Cargando…

Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels

Next generation sequencing of cell-free DNA (cfDNA) is a promising method for treatment monitoring and therapy selection in metastatic breast cancer (MBC). However, distinguishing tumor-specific variants from sequencing artefacts and germline variation with low false discovery rate is challenging wh...

Descripción completa

Detalles Bibliográficos
Autores principales: Jongbloed, Elisabeth M., Jansen, Maurice P. H. M., de Weerd, Vanja, Helmijr, Jean A., Beaufort, Corine M., Reinders, Marcel J. T., van Marion, Ronald, van IJcken, Wilfred F. J., Sonke, Gabe S., Konings, Inge R., Jager, Agnes, Martens, John W. M., Wilting, Saskia M., Makrodimitris, Stavros
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300101/
https://www.ncbi.nlm.nih.gov/pubmed/37369746
http://dx.doi.org/10.1038/s41598-023-37409-1
_version_ 1785064514457174016
author Jongbloed, Elisabeth M.
Jansen, Maurice P. H. M.
de Weerd, Vanja
Helmijr, Jean A.
Beaufort, Corine M.
Reinders, Marcel J. T.
van Marion, Ronald
van IJcken, Wilfred F. J.
Sonke, Gabe S.
Konings, Inge R.
Jager, Agnes
Martens, John W. M.
Wilting, Saskia M.
Makrodimitris, Stavros
author_facet Jongbloed, Elisabeth M.
Jansen, Maurice P. H. M.
de Weerd, Vanja
Helmijr, Jean A.
Beaufort, Corine M.
Reinders, Marcel J. T.
van Marion, Ronald
van IJcken, Wilfred F. J.
Sonke, Gabe S.
Konings, Inge R.
Jager, Agnes
Martens, John W. M.
Wilting, Saskia M.
Makrodimitris, Stavros
author_sort Jongbloed, Elisabeth M.
collection PubMed
description Next generation sequencing of cell-free DNA (cfDNA) is a promising method for treatment monitoring and therapy selection in metastatic breast cancer (MBC). However, distinguishing tumor-specific variants from sequencing artefacts and germline variation with low false discovery rate is challenging when using large targeted sequencing panels covering many tumor suppressor genes. To address this, we built a machine learning model to remove false positive variant calls and augmented it with additional filters to ensure selection of tumor-derived variants. We used cfDNA of 70 MBC patients profiled with both the small targeted Oncomine breast panel (Thermofisher) and the much larger Qiaseq Human Breast Cancer Panel (Qiagen). The model was trained on the panels’ common regions using Oncomine hotspot mutations as ground truth. Applied to Qiaseq data, it achieved 35% sensitivity and 36% precision, outperforming basic filtering. For 20 patients we used germline DNA to filter for somatic variants and obtained 245 variants in total, while our model found seven variants, of which six were also detected using the germline strategy. In ten tumor-free individuals, our method detected in total one (potentially germline) variant, in contrast to 521 variants detected without our model. These results indicate that our model largely detects somatic variants.
format Online
Article
Text
id pubmed-10300101
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-103001012023-06-29 Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels Jongbloed, Elisabeth M. Jansen, Maurice P. H. M. de Weerd, Vanja Helmijr, Jean A. Beaufort, Corine M. Reinders, Marcel J. T. van Marion, Ronald van IJcken, Wilfred F. J. Sonke, Gabe S. Konings, Inge R. Jager, Agnes Martens, John W. M. Wilting, Saskia M. Makrodimitris, Stavros Sci Rep Article Next generation sequencing of cell-free DNA (cfDNA) is a promising method for treatment monitoring and therapy selection in metastatic breast cancer (MBC). However, distinguishing tumor-specific variants from sequencing artefacts and germline variation with low false discovery rate is challenging when using large targeted sequencing panels covering many tumor suppressor genes. To address this, we built a machine learning model to remove false positive variant calls and augmented it with additional filters to ensure selection of tumor-derived variants. We used cfDNA of 70 MBC patients profiled with both the small targeted Oncomine breast panel (Thermofisher) and the much larger Qiaseq Human Breast Cancer Panel (Qiagen). The model was trained on the panels’ common regions using Oncomine hotspot mutations as ground truth. Applied to Qiaseq data, it achieved 35% sensitivity and 36% precision, outperforming basic filtering. For 20 patients we used germline DNA to filter for somatic variants and obtained 245 variants in total, while our model found seven variants, of which six were also detected using the germline strategy. In ten tumor-free individuals, our method detected in total one (potentially germline) variant, in contrast to 521 variants detected without our model. These results indicate that our model largely detects somatic variants. Nature Publishing Group UK 2023-06-27 /pmc/articles/PMC10300101/ /pubmed/37369746 http://dx.doi.org/10.1038/s41598-023-37409-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Jongbloed, Elisabeth M.
Jansen, Maurice P. H. M.
de Weerd, Vanja
Helmijr, Jean A.
Beaufort, Corine M.
Reinders, Marcel J. T.
van Marion, Ronald
van IJcken, Wilfred F. J.
Sonke, Gabe S.
Konings, Inge R.
Jager, Agnes
Martens, John W. M.
Wilting, Saskia M.
Makrodimitris, Stavros
Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels
title Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels
title_full Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels
title_fullStr Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels
title_full_unstemmed Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels
title_short Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels
title_sort machine learning-based somatic variant calling in cell-free dna of metastatic breast cancer patients using large ngs panels
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300101/
https://www.ncbi.nlm.nih.gov/pubmed/37369746
http://dx.doi.org/10.1038/s41598-023-37409-1
work_keys_str_mv AT jongbloedelisabethm machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT jansenmauricephm machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT deweerdvanja machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT helmijrjeana machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT beaufortcorinem machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT reindersmarceljt machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT vanmarionronald machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT vanijckenwilfredfj machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT sonkegabes machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT koningsinger machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT jageragnes machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT martensjohnwm machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT wiltingsaskiam machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels
AT makrodimitrisstavros machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels