Cargando…
Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels
Next generation sequencing of cell-free DNA (cfDNA) is a promising method for treatment monitoring and therapy selection in metastatic breast cancer (MBC). However, distinguishing tumor-specific variants from sequencing artefacts and germline variation with low false discovery rate is challenging wh...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300101/ https://www.ncbi.nlm.nih.gov/pubmed/37369746 http://dx.doi.org/10.1038/s41598-023-37409-1 |
_version_ | 1785064514457174016 |
---|---|
author | Jongbloed, Elisabeth M. Jansen, Maurice P. H. M. de Weerd, Vanja Helmijr, Jean A. Beaufort, Corine M. Reinders, Marcel J. T. van Marion, Ronald van IJcken, Wilfred F. J. Sonke, Gabe S. Konings, Inge R. Jager, Agnes Martens, John W. M. Wilting, Saskia M. Makrodimitris, Stavros |
author_facet | Jongbloed, Elisabeth M. Jansen, Maurice P. H. M. de Weerd, Vanja Helmijr, Jean A. Beaufort, Corine M. Reinders, Marcel J. T. van Marion, Ronald van IJcken, Wilfred F. J. Sonke, Gabe S. Konings, Inge R. Jager, Agnes Martens, John W. M. Wilting, Saskia M. Makrodimitris, Stavros |
author_sort | Jongbloed, Elisabeth M. |
collection | PubMed |
description | Next generation sequencing of cell-free DNA (cfDNA) is a promising method for treatment monitoring and therapy selection in metastatic breast cancer (MBC). However, distinguishing tumor-specific variants from sequencing artefacts and germline variation with low false discovery rate is challenging when using large targeted sequencing panels covering many tumor suppressor genes. To address this, we built a machine learning model to remove false positive variant calls and augmented it with additional filters to ensure selection of tumor-derived variants. We used cfDNA of 70 MBC patients profiled with both the small targeted Oncomine breast panel (Thermofisher) and the much larger Qiaseq Human Breast Cancer Panel (Qiagen). The model was trained on the panels’ common regions using Oncomine hotspot mutations as ground truth. Applied to Qiaseq data, it achieved 35% sensitivity and 36% precision, outperforming basic filtering. For 20 patients we used germline DNA to filter for somatic variants and obtained 245 variants in total, while our model found seven variants, of which six were also detected using the germline strategy. In ten tumor-free individuals, our method detected in total one (potentially germline) variant, in contrast to 521 variants detected without our model. These results indicate that our model largely detects somatic variants. |
format | Online Article Text |
id | pubmed-10300101 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-103001012023-06-29 Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels Jongbloed, Elisabeth M. Jansen, Maurice P. H. M. de Weerd, Vanja Helmijr, Jean A. Beaufort, Corine M. Reinders, Marcel J. T. van Marion, Ronald van IJcken, Wilfred F. J. Sonke, Gabe S. Konings, Inge R. Jager, Agnes Martens, John W. M. Wilting, Saskia M. Makrodimitris, Stavros Sci Rep Article Next generation sequencing of cell-free DNA (cfDNA) is a promising method for treatment monitoring and therapy selection in metastatic breast cancer (MBC). However, distinguishing tumor-specific variants from sequencing artefacts and germline variation with low false discovery rate is challenging when using large targeted sequencing panels covering many tumor suppressor genes. To address this, we built a machine learning model to remove false positive variant calls and augmented it with additional filters to ensure selection of tumor-derived variants. We used cfDNA of 70 MBC patients profiled with both the small targeted Oncomine breast panel (Thermofisher) and the much larger Qiaseq Human Breast Cancer Panel (Qiagen). The model was trained on the panels’ common regions using Oncomine hotspot mutations as ground truth. Applied to Qiaseq data, it achieved 35% sensitivity and 36% precision, outperforming basic filtering. For 20 patients we used germline DNA to filter for somatic variants and obtained 245 variants in total, while our model found seven variants, of which six were also detected using the germline strategy. In ten tumor-free individuals, our method detected in total one (potentially germline) variant, in contrast to 521 variants detected without our model. These results indicate that our model largely detects somatic variants. Nature Publishing Group UK 2023-06-27 /pmc/articles/PMC10300101/ /pubmed/37369746 http://dx.doi.org/10.1038/s41598-023-37409-1 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Jongbloed, Elisabeth M. Jansen, Maurice P. H. M. de Weerd, Vanja Helmijr, Jean A. Beaufort, Corine M. Reinders, Marcel J. T. van Marion, Ronald van IJcken, Wilfred F. J. Sonke, Gabe S. Konings, Inge R. Jager, Agnes Martens, John W. M. Wilting, Saskia M. Makrodimitris, Stavros Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels |
title | Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels |
title_full | Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels |
title_fullStr | Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels |
title_full_unstemmed | Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels |
title_short | Machine learning-based somatic variant calling in cell-free DNA of metastatic breast cancer patients using large NGS panels |
title_sort | machine learning-based somatic variant calling in cell-free dna of metastatic breast cancer patients using large ngs panels |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300101/ https://www.ncbi.nlm.nih.gov/pubmed/37369746 http://dx.doi.org/10.1038/s41598-023-37409-1 |
work_keys_str_mv | AT jongbloedelisabethm machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT jansenmauricephm machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT deweerdvanja machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT helmijrjeana machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT beaufortcorinem machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT reindersmarceljt machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT vanmarionronald machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT vanijckenwilfredfj machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT sonkegabes machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT koningsinger machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT jageragnes machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT martensjohnwm machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT wiltingsaskiam machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels AT makrodimitrisstavros machinelearningbasedsomaticvariantcallingincellfreednaofmetastaticbreastcancerpatientsusinglargengspanels |