Cargando…
Forecasting seizure likelihood from cycles of self-reported events and heart rate: a prospective pilot study
BACKGROUND: Seizure risk forecasting could reduce injuries and even deaths in people with epilepsy. There is great interest in using non-invasive wearable devices to generate forecasts of seizure risk. Forecasts based on cycles of epileptic activity, seizure times or heart rate have provided promisi...
Autores principales: | Xiong, Wenjuan, Stirling, Rachel E., Payne, Daniel E., Nurse, Ewan S., Kameneva, Tatiana, Cook, Mark J., Viana, Pedro F., Richardson, Mark P., Brinkmann, Benjamin H., Freestone, Dean R., Karoly, Philippa J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300292/ https://www.ncbi.nlm.nih.gov/pubmed/37331164 http://dx.doi.org/10.1016/j.ebiom.2023.104656 |
Ejemplares similares
-
Forecasting Seizure Likelihood With Wearable Technology
por: Stirling, Rachel E., et al.
Publicado: (2021) -
Multiday cycles of heart rate are associated with seizure likelihood: An observational cohort study
por: Karoly, Philippa J., et al.
Publicado: (2021) -
Seizure Diaries and Forecasting With Wearables: Epilepsy Monitoring Outside the Clinic
por: Brinkmann, Benjamin H., et al.
Publicado: (2021) -
Epileptic Seizure Cycles: Six Common Clinical Misconceptions
por: Karoly, Philippa J., et al.
Publicado: (2021) -
Perceived seizure risk in epilepsy – Chronic electronic surveys with and without concurrent EEG
por: Cui, Jie, et al.
Publicado: (2023)