Cargando…
Integrating the root cause analysis to machine learning interpretation for predicting future failure
The research proposes a new model for evaluating offshore pipelines due to corrosion. The existing inspection method has an inherent limitation in reusing the primary root cause analysis data to forecast the potential loss and corrosion mitigation, particularly in the scope of data utilization. The...
Autores principales: | Aditiyawarman, Taufik, Soedarsono, Johny Wahyuadi, Setiawan Kaban, Agus Paul, Suryadi, Rahmadani, Haryo, Riastuti, Rini |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10300331/ https://www.ncbi.nlm.nih.gov/pubmed/37389040 http://dx.doi.org/10.1016/j.heliyon.2023.e16946 |
Ejemplares similares
-
Simple tuberculosis screening tool using signs, symptoms, and risk factors to reduce the missed opportunity in the older population
por: Hidayat, Agus, et al.
Publicado: (2022) -
Interpretable machine learning prediction of all-cause mortality
por: Qiu, Wei, et al.
Publicado: (2022) -
Interpretable prediction of 3-year all-cause mortality in patients with chronic heart failure based on machine learning
por: Xu, Chenggong, et al.
Publicado: (2023) -
Root cause prediction for failures in semiconductor industry, a genetic algorithm–machine learning approach
por: Rammal, Abbas, et al.
Publicado: (2023) -
Characteristics of Previous Tuberculosis Treatment History in Patients with Treatment Failure and the Impact on Acquired Drug-Resistant Tuberculosis
por: Soedarsono, Soedarsono, et al.
Publicado: (2023)